Topzle Topzle

Vigesimal

Updated: Wikipedia source

Vigesimal

A vigesimal ( vij-ESS-im-əl) or base-20 (base-score) numeral system is based on twenty (in the same way in which the decimal numeral system is based on ten). Vigesimal is derived from the Latin adjective vicesimus, meaning 'twentieth'.

Tables

Comparison
eighteen
eighteen
Decimal
18
Vigesimal
I
Vigesimal
J
Name spelled out(in English)
eighteen
nineteen
nineteen
Decimal
19
Vigesimal
J
Vigesimal
K
Name spelled out(in English)
nineteen
Decimal
Vigesimal
Name spelled out(in English)
0
0
zero
1
1
one
2
2
two
3
3
three
4
4
four
5
5
five
6
6
six
7
7
seven
8
8
eight
9
9
nine
10
A
ten
11
B
eleven
12
C
twelve
13
D
thirteen
14
E
fourteen
15
F
fifteen
16
G
sixteen
17
H
seventeen
18
I
J
eighteen
19
J
K
nineteen
20
10
twenty
400
100
four hundred
8000
1000
eight thousand
160000
10000
one hundred andsixty thousand
Vigesimal multiplication table
2
2
1
2
2
4
3
6
4
8
5
A
6
C
7
E
8
G
9
I
A
10
B
12
C
14
D
16
E
18
F
1A
G
1C
H
1E
I
1G
J
1I
10
20
3
3
1
3
2
6
3
9
4
C
5
F
6
I
7
11
8
14
9
17
A
1A
B
1D
C
1G
D
1J
E
22
F
25
G
28
H
2B
I
2E
J
2H
10
30
4
4
1
4
2
8
3
C
4
G
5
10
6
14
7
18
8
1C
9
1G
A
20
B
24
C
28
D
2C
E
2G
F
30
G
34
H
38
I
3C
J
3G
10
40
5
5
1
5
2
A
3
F
4
10
5
15
6
1A
7
1F
8
20
9
25
A
2A
B
2F
C
30
D
35
E
3A
F
3F
G
40
H
45
I
4A
J
4F
10
50
6
6
1
6
2
C
3
I
4
14
5
1A
6
1G
7
22
8
28
9
2E
A
30
B
36
C
3C
D
3I
E
44
F
4A
G
4G
H
52
I
58
J
5E
10
60
7
7
1
7
2
E
3
11
4
18
5
1F
6
22
7
29
8
2G
9
33
A
3A
B
3H
C
44
D
4B
E
4I
F
55
G
5C
H
5J
I
66
J
6D
10
70
8
8
1
8
2
G
3
14
4
1C
5
20
6
28
7
2G
8
34
9
3C
A
40
B
48
C
4G
D
54
E
5C
F
60
G
68
H
6G
I
74
J
7C
10
80
9
9
1
9
2
I
3
17
4
1G
5
25
6
2E
7
33
8
3C
9
41
A
4A
B
4J
C
58
D
5H
E
66
F
6F
G
74
H
7D
I
82
J
8B
10
90
A
A
1
A
2
10
3
1A
4
20
5
2A
6
30
7
3A
8
40
9
4A
A
50
B
5A
C
60
D
6A
E
70
F
7A
G
80
H
8A
I
90
J
9A
10
A0
B
B
1
B
2
12
3
1D
4
24
5
2F
6
36
7
3H
8
48
9
4J
A
5A
B
61
C
6C
D
73
E
7E
F
85
G
8G
H
97
I
9I
J
A9
10
B0
C
C
1
C
2
14
3
1G
4
28
5
30
6
3C
7
44
8
4G
9
58
A
60
B
6C
C
74
D
7G
E
88
F
90
G
9C
H
A4
I
AG
J
B8
10
C0
D
D
1
D
2
16
3
1J
4
2C
5
35
6
3I
7
4B
8
54
9
5H
A
6A
B
73
C
7G
D
89
E
92
F
9F
G
A8
H
B1
I
BE
J
C7
10
D0
E
E
1
E
2
18
3
22
4
2G
5
3A
6
44
7
4I
8
5C
9
66
A
70
B
7E
C
88
D
92
E
9G
F
AA
G
B4
H
BI
I
CC
J
D6
10
E0
F
F
1
F
2
1A
3
25
4
30
5
3F
6
4A
7
55
8
60
9
6F
A
7A
B
85
C
90
D
9F
E
AA
F
B5
G
C0
H
CF
I
DA
J
E5
10
F0
G
G
1
G
2
1C
3
28
4
34
5
40
6
4G
7
5C
8
68
9
74
A
80
B
8G
C
9C
D
A8
E
B4
F
C0
G
CG
H
DC
I
E8
J
F4
10
G0
H
H
1
H
2
1E
3
2B
4
38
5
45
6
52
7
5J
8
6G
9
7D
A
8A
B
97
C
A4
D
B1
E
BI
F
CF
G
DC
H
E9
I
F6
J
G3
10
H0
I
I
1
I
2
1G
3
2E
4
3C
5
4A
6
58
7
66
8
74
9
82
A
90
B
9I
C
AG
D
BE
E
CC
F
DA
G
E8
H
F6
I
G4
J
H2
10
I0
J
J
1
J
2
1I
3
2H
4
3G
5
4F
6
5E
7
6D
8
7C
9
8B
A
9A
B
A9
C
B8
D
C7
E
D6
F
E5
G
F4
H
G3
I
H2
J
I1
10
J0
10
10
1
10
2
20
3
30
4
40
5
50
6
60
7
70
8
80
9
90
A
A0
B
B0
C
C0
D
D0
E
E0
F
F0
G
G0
H
H0
I
I0
J
J0
10
100
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
G
H
I
J
10
2
4
6
8
A
C
E
G
I
10
12
14
16
18
1A
1C
1E
1G
1I
20
3
6
9
C
F
I
11
14
17
1A
1D
1G
1J
22
25
28
2B
2E
2H
30
4
8
C
G
10
14
18
1C
1G
20
24
28
2C
2G
30
34
38
3C
3G
40
5
A
F
10
15
1A
1F
20
25
2A
2F
30
35
3A
3F
40
45
4A
4F
50
6
C
I
14
1A
1G
22
28
2E
30
36
3C
3I
44
4A
4G
52
58
5E
60
7
E
11
18
1F
22
29
2G
33
3A
3H
44
4B
4I
55
5C
5J
66
6D
70
8
G
14
1C
20
28
2G
34
3C
40
48
4G
54
5C
60
68
6G
74
7C
80
9
I
17
1G
25
2E
33
3C
41
4A
4J
58
5H
66
6F
74
7D
82
8B
90
A
10
1A
20
2A
30
3A
40
4A
50
5A
60
6A
70
7A
80
8A
90
9A
A0
B
12
1D
24
2F
36
3H
48
4J
5A
61
6C
73
7E
85
8G
97
9I
A9
B0
C
14
1G
28
30
3C
44
4G
58
60
6C
74
7G
88
90
9C
A4
AG
B8
C0
D
16
1J
2C
35
3I
4B
54
5H
6A
73
7G
89
92
9F
A8
B1
BE
C7
D0
E
18
22
2G
3A
44
4I
5C
66
70
7E
88
92
9G
AA
B4
BI
CC
D6
E0
F
1A
25
30
3F
4A
55
60
6F
7A
85
90
9F
AA
B5
C0
CF
DA
E5
F0
G
1C
28
34
40
4G
5C
68
74
80
8G
9C
A8
B4
C0
CG
DC
E8
F4
G0
H
1E
2B
38
45
52
5J
6G
7D
8A
97
A4
B1
BI
CF
DC
E9
F6
G3
H0
I
1G
2E
3C
4A
58
66
74
82
90
9I
AG
BE
CC
DA
E8
F6
G4
H2
I0
J
1I
2H
3G
4F
5E
6D
7C
8B
9A
A9
B8
C7
D6
E5
F4
G3
H2
I1
J0
10
20
30
40
50
60
70
80
90
A0
B0
C0
D0
E0
F0
G0
H0
I0
J0
100
· Fractions
Fraction
Fraction
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
Fraction
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
Prime factorsof the denominator
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
Positional representation
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
Positional representation
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
Prime factorsof the denominator
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
Fraction
⁠1/2⁠
⁠1/2⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
⁠1/2⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
2
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
0.5
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
0.A
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
2
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
⁠1/2⁠
⁠1/3⁠
⁠1/3⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
⁠1/3⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
3
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
0.3333... = 0.3
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
0.6D6D... = 0.6D
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
3
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
⁠1/3⁠
⁠1/4⁠
⁠1/4⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
⁠1/4⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
2
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
0.25
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
0.5
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
2
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
⁠1/4⁠
⁠1/5⁠
⁠1/5⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
⁠1/5⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
5
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
0.2
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
0.4
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
5
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
⁠1/5⁠
⁠1/6⁠
⁠1/6⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
⁠1/6⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
2, 3
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
0.16
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
0.36D
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
2, 3
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
⁠1/6⁠
⁠1/7⁠
⁠1/7⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
⁠1/7⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
7
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
0.142857
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
0.2H
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
7
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
⁠1/7⁠
⁠1/8⁠
⁠1/8⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
⁠1/8⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
2
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
0.125
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
0.2A
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
2
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
⁠1/8⁠
⁠1/9⁠
⁠1/9⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
⁠1/9⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
3
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
0.1
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
0.248HFB
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
3
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
⁠1/9⁠
⁠1/10⁠
⁠1/10⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
⁠1/10⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
2, 5
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
0.1
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
0.2
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
2, 5
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
⁠1/A⁠
⁠1/11⁠
⁠1/11⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
⁠1/11⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
11
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
0.09
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
0.1G759
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
B
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
⁠1/B⁠
⁠1/12⁠
⁠1/12⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
⁠1/12⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
2, 3
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
0.083
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
0.1D6
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
2, 3
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
⁠1/C⁠
⁠1/13⁠
⁠1/13⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
⁠1/13⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
13
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
0.076923
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
0.1AF7DGI94C63
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
D
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
⁠1/D⁠
⁠1/14⁠
⁠1/14⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
⁠1/14⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
2, 7
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
0.0714285
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
0.18B
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
2, 7
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
⁠1/E⁠
⁠1/15⁠
⁠1/15⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
⁠1/15⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
3, 5
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
0.06
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
0.16D
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
3, 5
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
⁠1/F⁠
⁠1/16⁠
⁠1/16⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
⁠1/16⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
2
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
0.0625
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
0.15
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
2
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
⁠1/G⁠
⁠1/17⁠
⁠1/17⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
⁠1/17⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
17
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
0.0588235294117647
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
0.13ABF5HCIG984E27
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
H
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
⁠1/H⁠
⁠1/18⁠
⁠1/18⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
⁠1/18⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
2, 3
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
0.05
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
0.1248HFB
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
2, 3
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
⁠1/I⁠
⁠1/19⁠
⁠1/19⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
⁠1/19⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
19
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
0.052631578947368421
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
0.1
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
J
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
⁠1/J⁠
⁠1/20⁠
⁠1/20⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
⁠1/20⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
2, 5
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
0.05
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
0.1
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
2, 5
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
⁠1/10⁠
In decimalPrime factors of the base: } }2, 5Prime factors of one below the base: 3Prime factors of one above the base: 11
In vigesimalPrime factors of the base: 2, 5Prime factors of one below the base: JPrime factors of one above the base: 3, 7
Fraction
Prime factorsof the denominator
Positional representation
Positional representation
Prime factorsof the denominator
Fraction
⁠1/2⁠
2
0.5
0.A
2
⁠1/2⁠
⁠1/3⁠
3
0.3333... = 0.3
0.6D6D... = 0.6D
3
⁠1/3⁠
⁠1/4⁠
2
0.25
0.5
2
⁠1/4⁠
⁠1/5⁠
5
0.2
0.4
5
⁠1/5⁠
⁠1/6⁠
2, 3
0.16
0.36D
2, 3
⁠1/6⁠
⁠1/7⁠
7
0.142857
0.2H
7
⁠1/7⁠
⁠1/8⁠
2
0.125
0.2A
2
⁠1/8⁠
⁠1/9⁠
3
0.1
HFB
3
⁠1/9⁠
⁠1/10⁠
2, 5
0.1
0.2
2, 5
⁠1/A⁠
⁠1/11⁠
11
0.09
0.1G759
B
⁠1/B⁠
⁠1/12⁠
2, 3
0.083
0.1D6
2, 3
⁠1/C⁠
⁠1/13⁠
13
0.076923
DGI94C63
D
⁠1/D⁠
⁠1/14⁠
2, 7
0.0714285
0.18B
2, 7
⁠1/E⁠
⁠1/15⁠
3, 5
0.06
0.16D
3, 5
⁠1/F⁠
⁠1/16⁠
2
0.0625
0.15
2
⁠1/G⁠
⁠1/17⁠
17
0.0588235294117647
ABF5HCIG984E27
H
⁠1/H⁠
⁠1/18⁠
2, 3
0.05
HFB
2, 3
⁠1/I⁠
⁠1/19⁠
19
0.052631578947368421
0.1
J
⁠1/J⁠
⁠1/20⁠
2, 5
0.05
0.1
2, 5
⁠1/10⁠
· Irrational numbers
√2 (the length of the diagonal of a unit square)
√2 (the length of the diagonal of a unit square)
Algebraic irrational numbers
√2 (the length of the diagonal of a unit square)
In decimal
1.41421356237309...
In vigesimal
1.85DE37JGF09H6...
√3 (the length of the diagonal of a unit cube)
√3 (the length of the diagonal of a unit cube)
Algebraic irrational numbers
√3 (the length of the diagonal of a unit cube)
In decimal
1.73205080756887...
In vigesimal
1.ECG82BDDF5617...
√5 (the length of the diagonal of a 1 × 2 rectangle)
√5 (the length of the diagonal of a 1 × 2 rectangle)
Algebraic irrational numbers
√5 (the length of the diagonal of a 1 × 2 rectangle)
In decimal
2.2360679774997...
In vigesimal
2.4E8AHAB3JHGIB...
φ (phi, the golden ratio = ⁠1+√5/2⁠)
φ (phi, the golden ratio = ⁠1+√5/2⁠)
Algebraic irrational numbers
φ (phi, the golden ratio = ⁠1+√5/2⁠)
In decimal
1.6180339887498...
In vigesimal
1.C7458F5BJII95...
Transcendental irrational numbers
Transcendental irrational numbers
Algebraic irrational numbers
Transcendental irrational numbers
In decimal
In decimal
In vigesimal
In vigesimal
π (pi, the ratio of circumference to diameter)
π (pi, the ratio of circumference to diameter)
Algebraic irrational numbers
π (pi, the ratio of circumference to diameter)
In decimal
3.14159265358979...
In vigesimal
3.2GCEG9GBHJ9D2...
e (the base of the natural logarithm)
e (the base of the natural logarithm)
Algebraic irrational numbers
e (the base of the natural logarithm)
In decimal
2.7182818284590452...
In vigesimal
2.E7651H08B0C95...
γ (the limiting difference between the harmonic series and the natural logarithm)
γ (the limiting difference between the harmonic series and the natural logarithm)
Algebraic irrational numbers
γ (the limiting difference between the harmonic series and the natural logarithm)
In decimal
0.5772156649015328606...
In vigesimal
0.BAHEA2B19BDIBI...
Algebraic irrational numbers
In decimal
In vigesimal
√2 (the length of the diagonal of a unit square)
1.41421356237309...
JGF09H6...
√3 (the length of the diagonal of a unit cube)
1.73205080756887...
1.ECG82BDDF5617...
√5 (the length of the diagonal of a 1 × 2 rectangle)
2.2360679774997...
AHAB3JHGIB...
φ (phi, the golden ratio = ⁠1+√5/2⁠)
1.6180339887498...
BJII95...
Transcendental irrational numbers
In decimal
In vigesimal
π (pi, the ratio of circumference to diameter)
3.14159265358979...
GCEG9GBHJ9D2...
e (the base of the natural logarithm)
2.7182818284590452...
2.E7651H08B0C95...
γ (the limiting difference between the harmonic series and the natural logarithm)
0.5772156649015328606...
0.BAHEA2B19BDIBI...
· Use › Americas
0
0
Col 1
0
Col 2
1
Col 3
2
Col 4
3
Col 5
4
Col 6
5
Col 7
6
Col 8
7
Col 9
8
Col 10
9
Col 11
10
Col 12
11
Col 13
12
Col 14
13
Col 15
14
Col 16
15
Col 17
16
Col 18
17
Col 19
18
Col 20
19
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Word-safe base 20 · Use › Software applications
Code digit
Code digit
Base 20 digit
Code digit
0
2
1
3
2
4
3
5
4
6
5
7
6
8
7
9
8
C
9
F
10
G
11
H
12
J
13
M
14
P
15
Q
16
R
17
V
18
W
19
X
Base 20 digit
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Code digit
2
3
4
5
6
7
8
9
C
F
G
H
J
M
P
Q
R
V
W
X

References

  1. Numbers: A Cultural History
    https://books.google.com/books?id=JQTHEAAAQBAJ&pg=PT151
  2. Language
    https://books.google.com/books?id=1GwUAAAAIAAJ&q=Nykl&pg=RA1-PA165
  3. Sherlock Holmes in Babylon: And Other Tales of Mathematical History
    https://books.google.com/books?id=BKRE5AjRM3AC&pg=PA89
  4. Chrisomalis 2010, p. 200: "The early origin of bar-and-dot numeration alongside the Middle Formative Mesoamerican script
    https://books.google.com/books?id=ux--OWgWvBQC&pg=PA200
  5. The Two-Year College Mathematics Journal
    https://doi.org/10.2307%2F3027363
  6. Sharing Our Pathways
    http://www.ankn.uaf.edu/sop/SOPv2i1.pdf
  7. A grammar of Atong
  8. Numeral Types and Changes Worldwide
  9. Chatterjee, Suhas. 1963. On Didei nouns, pronouns, numerals, and demonstratives. Chicago: mimeo., 1963. (cf. Munda Bibli
    http://www.ling.hawaii.edu/austroasiatic/AA/Munda/BIBLIO/biblio.authors
  10. Trends in Linguistics
    https://web.archive.org/web/20210622052221/https://mpi-lingweb.shh.mpg.de/numeral/TypNumCuhk_11ho.pdf
  11. www.theguardian.com
    https://www.theguardian.com/notesandqueries/query/0,,-4751,00.html
  12. The origin of the Albanians: linguistically investigated
    https://books.google.com/books?id=aXIbAQAAIAAJ
  13. Artículos publicados en la 1.ª época de "Euzkadi" : revista de Ciencias, Bellas Artes y Letras de Bilbao por Arana-Goiri
    http://www.kultura.ejgv.euskadi.net/r46-19239/es/q56War/q56ControladorServlet?mapping=detalleMonografia.do&accion=4&idObjeto=2422376&idLibro=09600015620
  14. Artículos ..., Sabino Arana, 112–118
    http://www.kultura.ejgv.euskadi.net/r46-19239/es/q56War/q56ControladorServlet?mapping=detalleMonografia.do&accion=4&idObjeto=2422386&idLibro=09600015620
  15. Efemérides Vascas y Reforma d ela Numeración Euzkérica, Sabino Arana, Biblioteca de la Gran Enciclopedia Vasca, Bilbao,
  16. Fran Ramovš, Karakteristika slovenskega narečja v Reziji in: Časopis za slovenski jezik, književnost in zgodovino, no 4,
    http://abaoaqu.maldura.unipd.it:8081/resianica/slv/ramkarak.do
  17. www.dlib.si
    http://www.dlib.si/details/URN:NBN:SI:doc-ZYCM5U86
  18. github.com
    https://github.com/google/open-location-code/blob/master/docs/olc_definition.adoc#open-location-code
  19. The diachronic view is like this. Spanish: veinte < Latin: vīgintī, the IE etymology of which (view) connects it to the
    http://starling.rinet.ru/cgi-bin/response.cgi?root=config&morpho=0&basename=%5Cdata%5Cie%5Cpiet&first=1&text_proto=&method_proto=substring&text_meaning=&method_meaning=substring&text_rusmean=&method_rusmean=substring&text_hitt=&method_hitt=substring&text_ind=&method_ind=substring&text_avest=&method_avest=substring&text_iran=&method_iran=substring&text_arm=&method_arm=substring&text_greek=&method_greek=substring&text_slav=&method_slav=substring&text_balt=&method_balt=substring&text_germ=&method_germ=substring&text_lat=v%C4%ABgint%C4%AB&method_lat=substring&text_ital=&method_ital=substring&text_celt=&method_celt=substring&text_alb=&method_alb=substring&text_tokh=&method_tokh=substring&text_refer=&method_refer=substring&text_comment=&method_comment=substring&text_any=&method_any=substring&sort=proto
  20. Lau, S. A Practical Cantonese English Dictionary (1977) The Government Printer
Image
Source:
Tip: Wheel or +/− to zoom, drag to pan, Esc to close.