Topzle Topzle

TRAPPIST-1

Updated: Wikipedia source

TRAPPIST-1

TRAPPIST-1 is an ultra-cool red dwarf star with seven known planets. It lies in the constellation Aquarius approximately 40.66 light-years away from Earth, and it has a surface temperature of about 2,566 K (2,290 °C; 4,160 °F). Its radius is slightly larger than Jupiter's and it has a mass of about 9% of the Sun. It is estimated to be 7.6 billion years old, making it older than the Solar System. The discovery of the star was first published in 2000. Observations in 2016 from TRAPPIST–South (Transiting Planets and Planetesimals Small Telescope project) at La Silla Observatory in Chile and other telescopes led to the discovery of two terrestrial planets in orbit around TRAPPIST-1. In 2017, further analysis of the original observations identified five more terrestrial planets. The seven planets take between 1.5 and 19 days to orbit the star in circular orbits. They are all likely tidally locked to TRAPPIST-1, and it is believed that each planet is in permanent day on one side and permanent night on the other. Their masses are comparable to that of Earth and they all lie in the same plane; seen from Earth, they pass in front of the star. This placement allowed the planets to be detected: when they pass in front of the star, its apparent magnitude dims. Up to four of the planets—designated d, e, f, and g—orbit at distances where temperatures are likely suitable for the existence of liquid water, and are thus potentially hospitable to life. There is no evidence of an atmosphere on any of the planets, and observations of TRAPPIST-1b have in particular ruled out the existence of an atmosphere. It is unclear whether radiation emissions from TRAPPIST-1 would allow for such atmospheres. The planets have low densities; they may consist of large amounts of volatile material. Due to the possibility of several of the planets being habitable, the system has drawn interest from researchers and has appeared in popular culture.

Infobox

Constellation
Aquarius
Right ascension
23h 06m 29.368s
Declination
−05° 02′ 29.04″
Apparent magnitude (V)
18.798±0.082
Evolutionary stage
Main sequence
Spectral type
M8V
Apparent magnitude (R)
16.466±0.065
Apparent magnitude (I)
14.024±0.115
Apparent magnitude (J)
11.354±0.022
Apparent magnitude (H)
10.718±0.021
Apparent magnitude (K)
10.296±0.023
V−R color index
2.332
R−I color index
2.442
J−H color index
0.636
J−K color index
1.058

Tables

TRAPPIST-1 planets data table[7][92][256]
b
b
Planet
b
Mass (M🜨)
1.374±0.069
Semi-major axis (au)
0.01154±0.0001
Semi-major axis (km)
1,726,000±15,000 km
Orbital period (days)
1.510826±0.000006
Orbital eccentricity
0.00622±0.00304
Orbital inclination
89.728±0.165°
Radius (R🜨)
1.116+0.014−0.012
Radiant flux
4.153±0.160
Temperature
397.6±3.8K(124.5 ± 3.8 °C; 256.0 ± 6.8 °F)
ORb
ORi
c
c
Planet
c
Mass (M🜨)
1.308±0.056
Semi-major axis (au)
0.01580±0.00013
Semi-major axis (km)
2,370,000±19,500
Orbital period (days)
2.421937±0.000018
Orbital eccentricity
0.00654±0.00188
Orbital inclination
89.778±0.118°
Radius (R🜨)
1.097+0.014−0.012
Radiant flux
2.214±0.085
Temperature
339.7±3.3K(66.6 ± 3.3 °C; 151.8 ± 5.9 °F)
ORb
5:8
ORi
5:8
d
d
Planet
d
Mass (M🜨)
0.388±0.012
Semi-major axis (au)
0.02227±0.00019
Semi-major axis (km)
3,340,500±28,500
Orbital period (days)
4.049219±0.000026
Orbital eccentricity
0.00837±0.00093
Orbital inclination
89.896±0.077°
Radius (R🜨)
0.770+0.011−0.010
Radiant flux
1.115±0.04
Temperature
286.2±2.8K(13.1 ± 2.8 °C; 55.5 ± 5.0 °F)
ORb
3:8
ORi
3:5
e
e
Planet
e
Mass (M🜨)
0.692±0.022
Semi-major axis (au)
0.02925±0.00025
Semi-major axis (km)
4,387,500±37,500
Orbital period (days)
6.101013±0.000035
Orbital eccentricity
0.00510±0.00058
Orbital inclination
89.793±0.048°
Radius (R🜨)
0.920+0.013−0.012
Radiant flux
0.646±0.025
Temperature
249.7±2.4K(−23.5 ± 2.4 °C; −10.2 ± 4.3 °F)
ORb
1:4
ORi
2:3
f
f
Planet
f
Mass (M🜨)
1.039±0.031
Semi-major axis (au)
0.03849±0.00033
Semi-major axis (km)
5,773,500±49,500
Orbital period (days)
9.207540±0.000032
Orbital eccentricity
0.01007±0.00068
Orbital inclination
89.740±0.019°
Radius (R🜨)
1.045+0.013−0.012
Radiant flux
0.373±0.014
Temperature
217.7±2.1K(−55.5 ± 2.1 °C; −67.8 ± 3.8 °F)
ORb
1:6
ORi
2:3
g
g
Planet
g
Mass (M🜨)
1.321±0.038
Semi-major axis (au)
0.04683±0.0004
Semi-major axis (km)
7,024,500±60,000
Orbital period (days)
12.352446±0.000054
Orbital eccentricity
0.00208±0.00058
Orbital inclination
89.742±0.012°
Radius (R🜨)
1.129+0.015−0.013
Radiant flux
0.252±0.010
Temperature
197.3±1.9K(−75.8 ± 1.9 °C; −104.5 ± 3.4 °F)
ORb
1:8
ORi
3:4
h
h
Planet
h
Mass (M🜨)
0.326±0.020
Semi-major axis (au)
0.06189±0.00053
Semi-major axis (km)
9,283,500±79,500
Orbital period (days)
18.772866±0.000214
Orbital eccentricity
0.00567±0.00121
Orbital inclination
89.805±0.013°
Radius (R🜨)
0.775+0.014−0.014
Radiant flux
0.144±0.006
Temperature
171.7±1.7K(−101.5 ± 1.7 °C; −150.6 ± 3.1 °F)
ORb
1:12
ORi
2:3
i (unconfirmed)
i (unconfirmed)
Planet
i (unconfirmed)
Mass (M🜨)
Semi-major axis (au)
0.081±0.010
Semi-major axis (km)
12,000,000±1000000
Orbital period (days)
28.3+5.4−6.0
Orbital eccentricity
Orbital inclination
89.78+0.13−0.20
Radius (R🜨)
0.224+0.066−0.051
Radiant flux
Temperature
ORb
ORi
Planet
Mass (M🜨)
Semi-major axis (au)
Semi-major axis (km)
Orbital period (days)
Orbital eccentricity
Orbital inclination
Radius (R🜨)
Radiant flux
Temperature
Surface gravity (g)
ORb
ORi
b
1.374±0.069
0.01154±0.0001
1,726,000±15,000 km
1.510826±0.000006
0.00622±0.00304
89.728±0.165°
1.116+0.014−0.012
4.153±0.160
397.6±3.8K(124.5 ± 3.8 °C; 256.0 ± 6.8 °F)
1.102±0.052
c
1.308±0.056
0.01580±0.00013
2,370,000±19,500
2.421937±0.000018
0.00654±0.00188
89.778±0.118°
1.097+0.014−0.012
2.214±0.085
339.7±3.3K(66.6 ± 3.3 °C; 151.8 ± 5.9 °F)
1.086±0.043
5:8
5:8
d
0.388±0.012
0.02227±0.00019
3,340,500±28,500
4.049219±0.000026
0.00837±0.00093
89.896±0.077°
0.770+0.011−0.010
1.115±0.04
286.2±2.8K(13.1 ± 2.8 °C; 55.5 ± 5.0 °F)
0.624±0.019
3:8
3:5
e
0.692±0.022
0.02925±0.00025
4,387,500±37,500
6.101013±0.000035
0.00510±0.00058
89.793±0.048°
0.920+0.013−0.012
0.646±0.025
249.7±2.4K(−23.5 ± 2.4 °C; −10.2 ± 4.3 °F)
0.817±0.024
1:4
2:3
f
1.039±0.031
0.03849±0.00033
5,773,500±49,500
9.207540±0.000032
0.01007±0.00068
89.740±0.019°
1.045+0.013−0.012
0.373±0.014
217.7±2.1K(−55.5 ± 2.1 °C; −67.8 ± 3.8 °F)
0.951±0.024
1:6
2:3
g
1.321±0.038
0.04683±0.0004
7,024,500±60,000
12.352446±0.000054
0.00208±0.00058
89.742±0.012°
1.129+0.015−0.013
0.252±0.010
197.3±1.9K(−75.8 ± 1.9 °C; −104.5 ± 3.4 °F)
1.035±0.026
1:8
3:4
h
0.326±0.020
0.06189±0.00053
9,283,500±79,500
18.772866±0.000214
0.00567±0.00121
89.805±0.013°
0.775+0.014−0.014
0.144±0.006
171.7±1.7K(−101.5 ± 1.7 °C; −150.6 ± 3.1 °F)
0.570±0.038
1:12
2:3
i (unconfirmed)
0.081±0.010
12,000,000±1000000
28.3+5.4−6.0
89.78+0.13−0.20
0.224+0.066−0.051

References

  1. A log(g) of 2.992 for the Earth indicates that TRAPPIST-1 has a surface gravity approximately 177 times stronger than Ea
  2. An internal name of the star used by the SPECULOOS project, as this planetary system was its first discovery.
  3. A red dwarf is a very small and cold star. They are the most common type of star in the Milky Way.
  4. TRAPPIST is a 60-centimetre (24 in) telescope intended to be a prototype for the "Search for habitable Planets EClipsing
  5. When a planet moves in front of its star, it absorbs part of the star's radiation, which may be observed via telescopes.
  6. The celestial equator is the equator's projection into the sky.
  7. Based on parallax measurements; the parallax is the position of a celestial object with respect to other celestial objec
  8. The movement of the star in the sky, relative to background stars.
  9. Red dwarfs include the spectral type M and K. Spectral types are used to categorise stars by their temperature.
  10. The effective temperature is the temperature a black body that emits the same amount of radiation would have.
  11. The photosphere is a thin layer at the surface of a star, where most of its light is produced.
  12. The solar cycle is the Sun's 11-year long period, during which solar output varies by about 0.1%.
  13. Including Lyman-alpha radiation
  14. The main sequence is the longest stage of a star's lifespan, when it is fusing hydrogen.
  15. Faculae are bright spots on the photosphere.
  16. Flares are presumably magnetic phenomena lasting for minutes or hours during which parts of the star emit more radiation
  17. For comparison, a strong fridge magnet has a strength of about 100 gauss and Earth's magnetic field about 0.5 gauss.
  18. The chromosphere is an outer layer of a star.
  19. A coronal mass ejection is an eruption of coronal material to the outside of a star.
  20. Exoplanets are named in order of discovery as "b", "c", and so on; if multiple planets are discovered at once they are n
  21. One astronomical unit (AU) is the mean distance between the Earth and the Sun.
  22. For comparison, Earth's orbit around the Sun is inclined by about 1.578 degrees.
  23. The inner two planets' orbits may be circular; the others could have a small eccentricity.
  24. A volatile is an element or compound with a low boiling point, such as ammonia, carbon dioxide, methane, nitrogen, sulfu
  25. The composition of the mantle of rocky planets is typically approximated as a magnesium silicate.
  26. A Laplace resonance is an orbital resonance that consists of three bodies, similar to the Galilean moons Europa, Ganymed
  27. This causes one half of the planet to perpetually face the star in a permanent day and the other half perpetually face a
  28. Where a planet, rather than being a symmetric sphere, has a different radius for each of the three main axes.
  29. Degassing is the release of gases, which can end up forming an atmosphere, from the mantle or from magma.
  30. Cryovolcanism occurs when steam or liquid water, or aqueous fluids, erupt to a planet surface ordinarily too cold to hos
  31. Hydrothermal vents are hot springs that occur underwater, and are hypothesised to be places where life could originate.
  32. Not accounting for gravitational compression.
  33. That is, the inner planets could never cover the entire disk of TRAPPIST-1 from the vantage point of these planets.
  34. The habitable zone is the region around a star where temperatures are neither too hot nor too cold for the existence of
  35. The Roche limit is the distance at which a body is ripped apart by tides.
  36. The Hill radius is the maximum distance at which a planet's gravity can hold a moon without the star's gravity taking th
  37. A streaming instability is a process where interactions between gas and solid particles cause the latter to clump togeth
  38. According to the International Astronomical Union criteria, a body has to clear its neighbourhood to qualify as a planet
  39. On the basis of the Lyman-alpha radiation emissions, TRAPPIST-1b may be losing hydrogen at a rate of 4.6×107 g/s.
  40. Clouds on the day side reflecting starlight could cool TRAPPIST-1d down to temperatures that allow the presence of liqui
  41. The exoplanet Proxima Centauri b resides in the habitable zone of the nearest star to the Solar System.
  42. Ocean bodies can still be referred to as such when they are covered by ice.
  43. Approximate orbital resonance with TRAPPIST-1b
  44. Approximate orbital resonance with inward planet
  45. Measured surface temperature of 503 K (230 °C; 446 °F).
  46. Bourrier et al. (2017) interpreted UV absorption data from the Hubble Space Telescope as implying the outer TRAPPIST-1 p
  47. Computer modelling indicates that the non-existence of an atmosphere around TRAPPIST-1 b and c does not imply the lack o
  48. Impact events can also remove atmospheres, but a high rate of such "impact erosion" implies a mass of meteorites that is
  49. A protoplanetary disk is a disk of matter surrounding a star. Planets are thought to form in such disks.
  50. A clathrate is a chemical compound where one compound (or chemical element) e.g. carbon dioxide (or xenon), is trapped w
  51. The exosphere is the region of an atmosphere where density is so low that atoms or molecules no longer collide. It is fo
  52. Different sources estimate that TRAPPIST-1 emits as much as the Sun at solar minimum, the same amount or more than the S
  53. The fraction of radiation in the XUV is estimated to range 6-9*10^-4 or 10^-3.51 of the total luminosity.
  54. Stellar activity is the occurrence of luminosity changes, mostly in the X-ray bands, caused by a star's magnetic field.
  55. Flares with an energy of over 1×1033 ergs (1.0×1026 J).
  56. Ohmic heating takes place when electrical currents excited by the stellar wind flow through parts of the atmosphere, hea
  57. In a runaway greenhouse, all water on a planet is in the form of vapour.
  58. Non-ocean bearing planets can also be subject to tidal heating (or flexing), resulting in structural deformation.
  59. For example, meteorite impacts could break off rocks from planets at a sufficient speed that they escape its gravity.
  60. Biosignatures are properties of a planet that can be detected from far away and which suggest the existence of life, suc
  61. As of 2017[update] they were among the smallest planets known where JWST would be able to detect atmospheres. It is poss
    https://en.wikipedia.org/w/index.php?title=TRAPPIST-1&action=edit
  62. Gaia EDR3 2021.
  63. Costa et al. 2006, p. 1240.
  64. Costa et al. 2006, p. 1234.
  65. Cutri et al. 2003, p. II/246.
  66. Agol et al. 2021, p. 1.
  67. Davoudi et al. 2024, p. 12.
  68. Delrez et al. 2018, pp. 3577–3597.
  69. Vida et al. 2017, p. 7.
  70. Barnes et al. 2014, pp. 3094–3113.
  71. Burgasser & Mamajek 2017, p. 7.
  72. Martínez-Rodríguez et al. 2019, p. 3.
  73. Turbet et al. 2020, p. 2.
  74. Meadows & Schmidt 2020, p. 727.
  75. Delrez et al. 2022, p. 2.
  76. Harbach et al. 2021, p. 3.
  77. Gargaud et al. 2011, Red Dwarf.
  78. Gizis et al. 2000, p. 1088.
  79. Gillon et al. 2016, p. 225.
  80. Gizis et al. 2000, p. 1085.
  81. Gizis et al. 2000, p. 1086.
  82. Barstow & Irwin 2016, p. 95.
  83. Gillon et al. 2013, p. 1.
  84. Shields, Ballard & Johnson 2016, p. 7.
  85. Goldsmith 2018, p. 118.
  86. Rinaldi & Núñez Ferrer 2017, p. 1.
  87. Angosto, Zaragoza & Melón 2017, p. 85.
  88. Angosto, Zaragoza & Melón 2017, p. 86.
  89. Marov & Shevchenko 2020, p. 865.
  90. Linsky 2019, p. 105.
  91. Cisewski 2017, p. 23.
  92. Gillon et al. 2017, p. 461.
  93. Ducrot 2021, p. 4.
  94. Gillon et al. 2016, p. 221.
  95. Turbet et al. 2020, p. 3.
  96. Agol et al. 2021, p. 2.
  97. Rinaldi & Núñez Ferrer 2017, pp. 1–2.
  98. Gargaud et al. 2011, Celestial Equator.
  99. Barstow & Irwin 2016, p. 93.
  100. Howell et al. 2016, p. 1.
  101. Gargaud et al. 2011, Parallax.
  102. Gargaud et al. 2011, Proper Motion.
  103. Howell et al. 2016, pp. 1, 4.
  104. The SAO Encyclopedia of Astronomy 2022, Red Dwarf.
  105. Gargaud et al. 2011, Spectral Type.
  106. Cloutier & Triaud 2016, p. 4019.
  107. Lienhard et al. 2020, pp. 3790–3808.
  108. Goldsmith 2018, p. 82.
  109. Fischer & Saur 2019, p. 2.
  110. Gillon et al. 2020, p. 10.
  111. Gargaud et al. 2011, Effective Temperature.
  112. Delrez et al. 2022, p. 21.
  113. Gargaud et al. 2011, Photosphere.
  114. Miles-Páez et al. 2019, p. 38.
  115. Davoudi et al. 2024, p. 3.
  116. Gargaud et al. 2011, Variability (Stellar).
  117. Glazier et al. 2020, p. 2.
  118. Fabbian et al. 2017, p. 770.
  119. Wilson et al. 2021, p. 10.
  120. Wilson et al. 2021, p. 1.
  121. Wilson et al. 2021, p. 2.
  122. Pineda & Hallinan 2018, p. 2.
  123. Pineda & Hallinan 2018, p. 7.
  124. Roettenbacher & Kane 2017, p. 2.
  125. Günther et al. 2022, p. 13.
  126. Burgasser & Mamajek 2017, p. 1.
  127. Acton et al. 2017, p. 32.
  128. Snellen 2017, p. 423.
  129. Acton et al. 2017, p. 34.
  130. Gargaud et al. 2011, Main Sequence.
  131. Morris et al. 2018, p. 1.
  132. Gargaud et al. 2011, Sun (and Young Sun).
  133. Morris et al. 2018, p. 5.
  134. Linsky 2019, p. 250.
  135. Morris et al. 2018, p. 6.
  136. Howard et al. 2023, p. 17.
  137. Gillon et al. 2020, p. 5.
  138. Vida et al. 2017, p. 2.
  139. Vida et al. 2017, p. 5.
  140. Airapetian et al. 2020, p. 159.
  141. MagLab 2022.
  142. Kochukhov 2021, p. 28.
  143. Davoudi et al. 2024, p. 2.
  144. Mullan & Paudel 2019, p. 2.
  145. Sakaue & Shibata 2021, p. 1.
  146. Linsky 2019, pp. 147–150.
  147. Fischer & Saur 2019, p. 6.
  148. Gonzales et al. 2019, p. 2.
  149. Schneider et al. 2011, p. 8.
  150. Harbach et al. 2021, p. 2.
  151. Veras & Breedt 2017, p. 2677.
  152. Agol et al. 2021, Tables.
  153. Grimm et al. 2018.
  154. Fraire et al. 2019, p. 1657.
  155. Goldsmith 2018, p. 120.
  156. Turbet et al. 2020, p. 8.
  157. Kral et al. 2018, p. 2650.
  158. Childs, Martin & Livio 2022, p. 4.
  159. Martin & Livio 2022, p. 6.
  160. Marino et al. 2020, p. 6071.
  161. Handbook of Scientific Tables 2022, p. 2.
  162. Agol et al. 2021, p. 14.
  163. Heising et al. 2021, p. 1.
  164. Brasser et al. 2022, p. 2373.
  165. Demory et al. 2020, p. 19.
  166. Maltagliati 2017, p. 1.
  167. Kane et al. 2021, p. 1.
  168. Srinivas 2017, p. 17.
  169. Madhusudhan 2020, p. 6-5.
  170. McDonough & Yoshizaki 2021, p. 9.
  171. Linsky 2019, p. 198.
  172. Gargaud et al. 2011, Volatile.
  173. Agol et al. 2021, p. 30.
  174. Gillon et al. 2020, p. 11.
  175. Schlichting & Young 2022, p. 16.
  176. Hakim et al. 2018, p. 3.
  177. Hakim et al. 2018, p. 70.
  178. Barth et al. 2021, p. 1326.
  179. Grimm et al. 2018, p. 8.
  180. Lingam & Loeb 2021, p. 594.
  181. Quick et al. 2023.
  182. Van Hoolst, Noack & Rivoldini 2019, p. 598.
  183. Linsky 2019, p. 253.
  184. Linsky 2019, p. 254.
  185. Aschwanden et al. 2018, p. 6.
  186. Grimm et al. 2018, p. 3.
  187. Madhusudhan 2020, p. 11-2.
  188. Grimm et al. 2018, p. 2.
  189. Ducrot 2021, p. 5.
  190. Meadows & Schmidt 2020, p. 4.
  191. Turbet et al. 2020, pp. 12–13.
  192. Lingam & Loeb 2021, p. 144.
  193. Goldsmith 2018, p. 123.
  194. Wolf 2017, p. 1.
  195. Turbet et al. 2020, p. 13.
  196. Vinson, Tamayo & Hansen 2019, p. 5747.
  197. Elshaboury et al. 2016, p. 5.
  198. Zanazzi & Lai 2017, p. 2879.
  199. Turbet et al. 2018, p. 7.
  200. Barr, Dobos & Kiss 2018, pp. 1–2.
  201. Gargaud et al. 2011, Degassing.
  202. Kislyakova et al. 2017, p. 880.
  203. Luger et al. 2017, p. 2.
  204. Quick et al. 2020, p. 19.
  205. Quick et al. 2023, p. 13.
  206. Turbet et al. 2018, p. 8.
  207. Quick et al. 2023, p. 2.
  208. Quick et al. 2023, p. 14.
  209. Gargaud et al. 2011, Hot Vent Microbiology.
  210. Kendall & Byrne 2020, p. 1.
  211. Kislyakova et al. 2017, p. 878.
  212. Barr, Dobos & Kiss 2018, p. 12.
  213. Turbet et al. 2020, p. 14.
  214. Zanazzi & Triaud 2019, p. 61.
  215. Navarro et al. 2022, p. 4.
  216. JPL 2021.
  217. Srinivas 2017, p. 16.
  218. Radnóti 2021, p. 4.
  219. Walsh 2024, p. 203.
  220. Wang et al. 2025, p. 7.
  221. O'Malley-James & Kaltenegger 2017, p. 27.
  222. Bourrier et al. 2017, p. 7.
  223. Shields & Carns 2018, p. 1.
  224. Eager et al. 2020, p. 10.
  225. O'Malley-James & Kaltenegger 2017, p. 26.
  226. Awiphan 2018, p. 13.
  227. Gargaud et al. 2011, Albedo.
  228. Alberti et al. 2017, p. 6.
  229. Barstow & Irwin 2016, p. 92.
  230. Checlair, Menou & Abbot 2017, p. 9.
  231. Kral et al. 2018, p. 2649.
  232. Rushby et al. 2020, p. 13.
  233. Carone et al. 2018, p. 4677.
  234. Yang & Ji 2018, p. 1.
  235. O'Malley-James & Kaltenegger 2019, p. 4542.
  236. Quick et al. 2023, p. 9.
  237. Quick et al. 2023, p. 1.
  238. Bourrier et al. 2017, p. 2.
  239. Bolmont et al. 2017, p. 3729.
  240. Bolmont et al. 2017, p. 3739.
  241. Bolmont et al. 2017, p. 3740.
  242. Kane 2017, p. 4.
  243. Gargaud et al. 2011, Roche Limit.
  244. Gargaud et al. 2011, Hill Radius/Sphere.
  245. Kane 2017, p. 3.
  246. Martínez-Rodríguez et al. 2019, p. 8.
  247. Martínez-Rodríguez et al. 2019, p. 6.
  248. Allen, Becker & Fuse 2018, p. 1.
  249. Farrish et al. 2019, p. 7.
  250. Farrish et al. 2019, p. 6.
  251. Airapetian et al. 2020, p. 164.
  252. Fraschetti et al. 2019, p. 11.
  253. Grayver et al. 2022, p. 9.
  254. Chao et al. 2021, p. 5.
  255. Turbet et al. 2020, p. 36.
  256. Turbet et al. 2020, p. 9.
  257. Childs et al. 2023, p. 3750.
  258. Ormel, Liu & Schoonenberg 2017, p. 3.
  259. Liu & Ji 2020, p. 24.
  260. Ogihara et al. 2022, p. 6.
  261. Brasser et al. 2022, p. 2374.
  262. Bean, Raymond & Owen 2021, p. 9.
  263. Grimm et al. 2018, p. 13.
  264. Marino et al. 2020, p. 6067.
  265. Turbet et al. 2020, pp. 9–10.
  266. Flock et al. 2019, p. 10.
  267. Heising et al. 2021, p. 5.
  268. Gressier et al. 2022, p. 2.
  269. Raymond et al. 2021, p. 1.
  270. Raymond et al. 2021, p. 2.
  271. Raymond et al. 2021, p. 3.
  272. Raymond et al. 2021, p. 4.
  273. Gabriel & Horn 2021, p. 6.
  274. Childs et al. 2023, p. 3762.
  275. Krissansen-Totton & Fortney 2022, p. 8.
  276. Grimm et al. 2018, p. 6.
  277. Gillon et al. 2016, p. 222.
  278. Lim et al. 2023, p. 2.
  279. Turbet et al. 2020, p. 24.
  280. Ih et al. 2023, p. 5.
  281. Ducrot et al. 2024, p. 3.
  282. Linsky 2019, pp. 198–199.
  283. Turbet et al. 2020, p. 28.
  284. Grenfell et al. 2020, p. 11.
  285. Turbet et al. 2020, p. 29.
  286. Grenfell et al. 2020, p. 18.
  287. Lim et al. 2023, p. 7.
  288. Lincowski et al. 2023, p. 8.
  289. Lim et al. 2023, p. 9.
  290. Ducrot et al. 2024, p. 2.
  291. Teixeira et al. 2023, p. 12.
  292. Agol et al. 2021, p. 21.
  293. Stevenson 2019, p. 329.
  294. Pierrehumbert & Hammond 2019, p. 285.
  295. Carone et al. 2018, p. 4683.
  296. Turbet et al. 2018, p. 17.
  297. Turbet et al. 2018, p. 1.
  298. Turbet et al. 2020, pp. 5–6.
  299. "Webb narrows atmospheric possibilities for Earth-sized exoplanet TRAPPIST-1 d"
    https://esawebb.org/news/weic2516/
  300. Agol et al. 2021, p. 10.
  301. Stevenson 2019, p. 327.
  302. Turbet et al. 2020, pp. 29–30.
  303. Meadows et al. 2018, p. 133.
  304. Janjic 2017, p. 61.
  305. Meadows et al. 2018, p. 141.
  306. Quick et al. 2023, p. 4.
  307. Quick et al. 2023, p. 11.
  308. Kane et al. 2021, p. 16.
  309. Kane et al. 2021, p. 14.
  310. Kane et al. 2021, p. 17.
  311. Airapetian et al. 2020, p. 171.
  312. Turbet et al. 2018, p. 2.
  313. Turbet et al. 2020, p. 30.
  314. Ducrot, Gillon & Agol 2022.
  315. Kipping 2018.
  316. arXiv
    https://arxiv.org/abs/2509.02128
  317. Agol et al. 2021.
  318. Ducrot et al. 2020, p. 8.
  319. Greene et al. 2023.
  320. Ih et al. 2023, p. 1.
  321. Teixeira et al. 2023, pp. 8, 9.
  322. Fortney 2018, p. 17.
  323. Wunderlich et al. 2020, pp. 26–27.
  324. Zhang et al. 2018, p. 1.
  325. Turbet et al. 2020, p. 33.
  326. Ducrot et al. 2020, p. 2.
  327. Howard et al. 2023, p. 2.
  328. Teixeira et al. 2023, p. 10.
  329. Gargaud et al. 2011, Protoplanetary Disk.
  330. Kral, Davoult & Charnay 2020, p. 770.
  331. Hori & Ogihara 2020, p. 1.
  332. Turbet et al. 2020, p. 10.
  333. Kral et al. 2018, p. 2670.
  334. Lingam & Loeb 2019a, p. 8.
  335. Turbet et al. 2018, p. 9.
  336. Turbet et al. 2018, p. 10.
  337. Turbet et al. 2018, p. 14.
  338. Turbet et al. 2018, pp. 14–15.
  339. Turbet et al. 2020, p. 23.
  340. Gillon et al. 2020, p. 14.
  341. Gressier et al. 2022, p. 6.
  342. dos Santos et al. 2019, p. 1.
  343. dos Santos et al. 2019, p. 11.
  344. Gillon et al. 2020, p. 15.
  345. Edwards et al. 2020, p. 11.
  346. Turbet et al. 2020, pp. 24–26.
  347. Teixeira et al. 2023, p. 2.
  348. Turbet et al. 2020, pp. 26–27.
  349. Ducrot et al. 2020, p. 19.
  350. Turbet et al. 2020, pp. 27–28.
  351. Turbet et al. 2020, p. 37.
  352. Wunderlich et al. 2020, p. 2.
  353. Krissansen-Totton & Fortney 2022, p. 14.
  354. Stevenson 2019, pp. 330–332.
  355. Zhang 2020, p. 57.
  356. Turbet et al. 2020, p. 6.
  357. Wheatley et al. 2017, p. 74.
  358. Turbet et al. 2020, pp. 7–8.
  359. Davoudi et al. 2024, p. 1.
  360. Acton et al. 2017, p. 33.
  361. Gargaud et al. 2011, Activity (Magnetic).
  362. Vida et al. 2024, p. 1.
  363. Glazier et al. 2020, p. 9.
  364. Samara, Patsourakos & Georgoulis 2021, p. 1.
  365. Linsky 2019, p. 191.
  366. Dong et al. 2018, p. 262.
  367. Teixeira et al. 2023, p. 5.
  368. Dong et al. 2018, p. 264.
  369. Cohen et al. 2018, p. 1.
  370. Linsky 2019, p. 189.
  371. Turbet et al. 2020, pp. 3, 5.
  372. Turbet et al. 2020, p. 5.
  373. Lingam & Loeb 2018a, p. 122.
  374. Pidhorodetska et al. 2020, p. 2.
  375. Lingam & Loeb 2018b, p. 973.
  376. Barr, Dobos & Kiss 2018, p. 6.
  377. Lingam & Loeb 2018b, pp. 969–970.
  378. Lingam & Loeb 2018b, p. 971.
  379. Lingam & Loeb 2018b, p. 972.
  380. Lingam & Loeb 2018b, p. 975.
  381. Lingam & Loeb 2019a, p. 11.
  382. Covone et al. 2021, p. 3332.
  383. Lingam & Loeb 2021, p. 347.
  384. Mullan & Bais 2018, p. 11.
  385. Lingam & Loeb 2019b, p. 5926.
  386. Goldsmith 2018, p. 124.
  387. Ranjan, Wordsworth & Sasselov 2017, pp. 2, 9.
  388. Schwieterman et al. 2019, p. 5.
  389. O'Malley-James & Kaltenegger 2017, p. 30.
  390. Valio et al. 2018, p. 179.
  391. Dencs & Regály 2019.
  392. Lingam & Loeb 2019c, p. 112.
  393. Gargaud et al. 2011, Chemolithotroph.
  394. Barth et al. 2021, p. 1344.
  395. Guimond, Rudge & Shorttle 2022, pp. 16–17.
  396. Guimond, Rudge & Shorttle 2022, p. 1.
  397. Glaser et al. 2020, p. 7.
  398. Tusay et al. 2024, p. 15.
  399. Pinchuk et al. 2019, p. 1.
  400. Tusay et al. 2024, p. 1.
  401. Tusay et al. 2024, p. 16.
  402. Kaltenegger & Faherty 2021, p. 505.
  403. Short & Stapelfeldt 2017, pp. 1, 28.
  404. Díaz 2017, pp. 185–186.
  405. Short & Stapelfeldt 2017, p. 28.
  406. Physics World 2017, p. 1.
  407. Riber 2018, p. 1.
  408. Howell 2020, p. 3–34.
  409. McKay 2021, p. 14.
  410. Janjic 2017, p. 57.
  411. Kanas 2019, p. 488.
  412. Gibb 2022, p. 2.
  413. Suhner 2017, p. 1.
  414. Gillon 2020a, p. 35.
  415. Walsh 2024, p. 204.
  416. Gillon 2020b, p. 50.
  417. Sein et al. 2021, p. 3.
  418. Hughes 2022, p. 148.
  419. Lane et al. 2022, p. 5.
  420. Tasker 2024, p. 278.
  421. Paladini 2019, pp. 239, 254.
  422. Exoplanet Travel Bureau 2021.
  423. AAS 2020, p. 309.
  424. Fidrick et al. 2020, pp. 1–2.
  425. Deming & Knutson 2020, p. 459.
  426. Grenfell 2017, p. 2.
  427. Madhusudhan 2019, p. 652.
  428. Turbet et al. 2020, p. 31.
  429. Morley et al. 2017, p. 1.
  430. Chiao 2019, p. 880.
  431. Lingam & Loeb 2018a, p. 116.
  432. Madhusudhan 2020, p. I-7.
  433. Delrez et al. 2022, p. 32.
  434. Kopparla et al. 2018, p. 1.
  435. Sleator & Smith 2017, pp. 1–2.
  436. Wang et al. 2025, p. 18.
  437. Wang 2022, p. 10.
  438. Lingam & Loeb 2018c.
  439. Malik & Determann 2024, p. 1.
  440. Determann 2019, pp. 168–169.
  441. Gutiérrez et al. 2019, p. 41.
  442. Guridi, Pertuze & Pfotenhauer 2020, p. 5.
  443. Euroschool 2018, p. 10.
  444. Srinivas 2017, p. 19.
Image
Source:
Tip: Wheel or +/− to zoom, drag to pan, Esc to close.