Topzle Topzle

Redshift

Updated: Wikipedia source

Redshift

In physics, a redshift is an increase in the wavelength, or equivalently, a decrease in the frequency, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and increase in frequency and energy, is known as a blueshift. Three forms of redshift occur in astronomy and cosmology: Doppler redshifts due to the relative motions of radiation sources, gravitational redshift as radiation escapes from gravitational potentials, and cosmological redshifts caused by the universe expanding. In astronomy, the value of a redshift is often denoted by the letter z, corresponding to the fractional change in wavelength (positive for redshifts, negative for blueshifts), and by the wavelength ratio 1 + z (which is greater than 1 for redshifts and less than 1 for blueshifts). Automated astronomical redshift surveys are an important tool for learning about the large-scale structure of the universe. Redshift and blueshift can also be related to photon energy and, via Planck's law, to a corresponding blackbody temperature. Examples of strong redshifting are a gamma ray perceived as an X-ray, or initially visible light perceived as radio waves. The initial 3000 kelvin (K) radiation from the Big Bang has redshifted far down to become the 3 K cosmic microwave background. Subtler redshifts are seen in the spectroscopic observations of astronomical objects, and are used in terrestrial technologies such as Doppler radar and radar guns. Gravitational waves, which also travel at the speed of light, are subject to the same redshift phenomena. Other physical processes exist that can lead to a shift in the frequency of electromagnetic radiation, including scattering and optical effects; however, the resulting changes are distinguishable from (astronomical) redshift and are not generally referred to as such.

Tables

· Concept
z = λ o b s v − λ e m i t λ e m i t {\displaystyle z={\frac {\lambda _{\mathrm {obsv} }-\lambda _{\mathrm {emit} }}{\lambda _{\mathrm {emit} }}}}
z = λ o b s v − λ e m i t λ e m i t {\displaystyle z={\frac {\lambda _{\mathrm {obsv} }-\lambda _{\mathrm {emit} }}{\lambda _{\mathrm {emit} }}}}
Based on wavelength
z = λ o b s v − λ e m i t λ e m i t {\displaystyle z={\frac {\lambda _{\mathrm {obsv} }-\lambda _{\mathrm {emit} }}{\lambda _{\mathrm {emit} }}}}
Based on frequency
z = f e m i t − f o b s v f o b s v {\displaystyle z={\frac {f_{\mathrm {emit} }-f_{\mathrm {obsv} }}{f_{\mathrm {obsv} }}}}
1 + z = λ o b s v λ e m i t {\displaystyle 1+z={\frac {\lambda _{\mathrm {obsv} }}{\lambda _{\mathrm {emit} }}}}
1 + z = λ o b s v λ e m i t {\displaystyle 1+z={\frac {\lambda _{\mathrm {obsv} }}{\lambda _{\mathrm {emit} }}}}
Based on wavelength
1 + z = λ o b s v λ e m i t {\displaystyle 1+z={\frac {\lambda _{\mathrm {obsv} }}{\lambda _{\mathrm {emit} }}}}
Based on frequency
1 + z = f e m i t f o b s v {\displaystyle 1+z={\frac {f_{\mathrm {emit} }}{f_{\mathrm {obsv} }}}}
Based on wavelength
Based on frequency
z = λ o b s v − λ e m i t λ }-\lambda _{\mathrm {emit} }}{\lambda _{\mathrm {emit} }}}}
z = f e m i t − }-f_{\mathrm {obsv} }}{f_{\mathrm {obsv} }}}}
1 + z = λ o b s v λ }}{\lambda _{\mathrm {emit} }}}}
1 + z = }}{f_{\mathrm {obsv} }}}}
Redshift summary · Physical origins › Summary table
Relativistic Doppler
Relativistic Doppler
Redshift type
Relativistic Doppler
Geometry
Minkowski space(flat spacetime)
Formulae
For motion completely in the radial orline-of-sight direction: 1 + z = γ ( 1 + v ∥ c ) = 1 + v ∥ c 1 − v ∥ c {\displaystyle 1+z=\gamma \left(1+{\frac {v_{\parallel }}{c}}\right)={\sqrt {\frac {1+{\frac {v_{\parallel }}{c}}}{1-{\frac {v_{\parallel }}{c}}}}}} z ≈ v ∥ c {\displaystyle z\approx {\frac {v_{\parallel }}{c}}} for small v ∥ {\displaystyle v_{\parallel }} For motion completely in the transverse direction: 1 + z = 1 1 − v ⊥ 2 c 2 {\displaystyle 1+z={\frac {1}{\sqrt {1-{\frac {v_{\perp }^{2}}{c^{2}}}}}}} z ≈ 1 2 ( v ⊥ c ) 2 {\displaystyle z\approx {\frac {1}{2}}\left({\frac {v_{\perp }}{c}}\right)^{2}} for small v ⊥ {\displaystyle v_{\perp }}
Cosmological redshift
Cosmological redshift
Redshift type
Cosmological redshift
Geometry
FLRW spacetime(expanding Big Bang universe)
Formulae
1 + z = a n o w a t h e n {\displaystyle 1+z={\frac {a_{\mathrm {now} }}{a_{\mathrm {then} }}}} Hubble's law: z ≈ H 0 D c {\displaystyle z\approx {\frac {H_{0}D}{c}}} for D ≪ c H 0 {\displaystyle D\ll {\frac {c}{H_{0}}}}
Gravitational redshift
Gravitational redshift
Redshift type
Gravitational redshift
Geometry
Any stationary spacetime
Formulae
1 + z = g t t ( receiver ) g t t ( source ) {\displaystyle 1+z={\sqrt {\frac {g_{tt}({\text{receiver}})}{g_{tt}({\text{source}})}}}} For the Schwarzschild geometry: 1 + z = 1 − r S r receiver 1 − r S r source = 1 − 2 G M c 2 r receiver 1 − 2 G M c 2 r source {\displaystyle 1+z={\sqrt {\frac {1-{\frac {r_{S}}{r_{\text{receiver}}}}}{1-{\frac {r_{S}}{r_{\text{source}}}}}}}={\sqrt {\frac {1-{\frac {2GM}{c^{2}r_{\text{receiver}}}}}{1-{\frac {2GM}{c^{2}r_{\text{source}}}}}}}} z ≈ 1 2 ( r S r source − r S r receiver ) {\displaystyle z\approx {\frac {1}{2}}\left({\frac {r_{S}}{r_{\text{source}}}}-{\frac {r_{S}}{r_{\text{receiver}}}}\right)} for r ≫ r S {\displaystyle r\gg r_{S}} In terms of escape velocity: z ≈ 1 2 ( v e c ) source 2 − 1 2 ( v e c ) receiver 2 {\displaystyle z\approx {\frac {1}{2}}\left({\frac {v_{\text{e}}}{c}}\right)_{\text{source}}^{2}-{\frac {1}{2}}\left({\frac {v_{\text{e}}}{c}}\right)_{\text{receiver}}^{2}} for v e ≪ c {\displaystyle v_{\text{e}}\ll c}
Redshift type
Geometry
Formulae
Relativistic Doppler
Minkowski space(flat spacetime)
For motion completely in the radial orline-of-sight direction: 1 + z = γ ( 1 + v ∥ c ) = 1 + v ∥ c 1 − v ∥ }{c}} ight)={\sqrt {\frac {1+{\frac {v_{\parallel }}{c}}}{1-{\frac {v_{\parallel }}{c}}}}}} z ≈ v ∥ }{c}}} for small v ∥ {\displaystyle } For motion completely in the transverse direction: 1 + z = 1 1 − v ⊥ 2 {\sqrt {1-{\frac {v_{\perp }^{2}}{c^{2}}}}}}} z ≈ 1 2 ( v ⊥ c ) 2 {\displaystyle z\approx {\frac {1}{2}}\left({\frac {v_{\perp }}{c}} ight)^{2}} for small v ⊥ {\displaystyle }
Cosmological redshift
FLRW spacetime(expanding Big Bang universe)
1 + z = }}{a_{\mathrm {then} }}}} Hubble's law: z ≈ D}{c}}} for D ≪ {H_{0}}}}
Gravitational redshift
Any stationary spacetime
1 + z = g t t ( receiver ) g t t ( source ) {\displaystyle 1+z={\sqrt {\frac {g_{tt}({\text{receiver}})}{g_{tt}({\text{source}})}}}} For the Schwarzschild geometry: 1 + z = 1 − r S r receiver 1 − r S r source = 1 − 2 G M c 2 r receiver 1 − 2 }{r_{\text{receiver}}}}}{1-{\frac {r_{S}}{r_{\text{source}}}}}}}={\sqrt {\frac {1-{\frac {2GM}{c^{2}r_{\text{receiver}}}}}{1-{\frac {2GM}{c^{2}r_{\text{source}}}}}}}} z ≈ 1 2 ( r S r source − r S r receiver ) {\displaystyle z\approx {\frac {1}{2}}\left({\frac {r_{S}}{r_{\text{source}}}}-{\frac {r_{S}}{r_{\text{receiver}}}} ight)} for r ≫ } In terms of escape velocity: z ≈ 1 2 ( v e c ) source 2 − 1 2 ( v e c ) {2}}\left({\frac {v_{\text{e}}}{c}} ight)_{\text{source}}^{2}-{\frac {1}{2}}\left({\frac {v_{\text{e}}}{c}} ight)_{\text{receiver}}^{2}} for v e ≪ }\ll c}

References

  1. Where z = redshift; v|| = velocity parallel to line-of-sight (positive if moving away from receiver); c = speed of light
  2. Physical Review D
    https://arxiv.org/abs/2011.13643
  3. ESA/Hubble Press Release
    https://esahubble.org/news/heic1219/
  4. NASA/IPAC Extragalactic Database
    https://web.archive.org/web/20131222052715/http://ned.ipac.caltech.edu/help/zdef.html
  5. Beiträge zur Fixsternenkunde
    https://ui.adsabs.harvard.edu/abs/1846befi.book.....D
  6. Unravelling Starlight: William and Margaret Huggins and the Rise of the New Astronomy
    https://www.cambridge.org/core/product/identifier/9780511751417/type/book
  7. Doppler Ultrasound in Obstetrics And Gynecology
    https://books.google.com/books?id=HedeGJms0n4C&q=%22Ballot%22&pg=PA3
  8. MacTutor History of Mathematics archive
    http://www-history.mcs.st-andrews.ac.uk/Biographies/Doppler.html
  9. Philosophical Transactions of the Royal Society of London
    https://ui.adsabs.harvard.edu/abs/1868RSPT..158..529H
  10. Physics Today
    https://doi.org/10.1063%2FPT.3.4429
  11. A History of Astronomy
    https://archive.org/details/historyofastrono0000pann/page/450/mode/2up?view=theater
  12. Astrophysical Journal
    https://doi.org/10.1086%2F140786
  13. The Oxford handbook of the history of modern cosmology
    https://search.worldcat.org/oclc/1052868704
  14. Lowell Observatory Bulletin
    https://ui.adsabs.harvard.edu/abs/1913LowOB...2...56S
  15. Popular Astronomy
    https://archive.org/details/sim_popular-astronomy_1915-01_23_1/page/20
  16. Proceedings of the National Academy of Sciences of the United States of America
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC522427
  17. "Universe is Expanding"
    https://imagine.gsfc.nasa.gov/educators/programs/cosmictimes/online_edition/1929/expanding.html
  18. Zeitschrift für Physik
    https://ui.adsabs.harvard.edu/abs/1922ZPhy...10..377F
  19. Astrophysical Journal
    https://doi.org/10.1086%2F322460
  20. The Mathematical Theory of Relativity
    https://books.google.com/books?id=errkj2WXGzIC&pg=PA164
  21. Oxford English Dictionary
    https://www.oed.com/view/Entry/160477
  22. Bulletin of the Astronomical Institutes of the Netherlands
    https://ui.adsabs.harvard.edu/abs/1934BAN.....7..205D
  23. Australian Physics
    https://arxiv.org/abs/1605.08634
  24. Journal of the Optical Society of America
    https://ui.adsabs.harvard.edu/abs/1938JOSA...28..215I
  25. Special Relativity for Beginners
  26. Light
  27. "Photons, Relativity, Doppler shift". Archived 2006-08-27 at the Wayback Machine. University of Queensland.
    http://www.physics.uq.edu.au/people/ross/phys2100/doppler.htm
  28. Cosmological Physics
    https://www.cambridge.org/core/product/identifier/9780511804533/type/book
  29. The First Three Minutes: A Modern View of the Origin of the Universe
  30. Cosmology and Particle Astrophysics
    https://books.google.com/books?id=CQYu_sutWAoC&pg=PA77
  31. Galaxy Formation
    https://books.google.com/books?id=2ARuLT-tk5EC&pg=PA161
  32. American Journal of Physics
    https://arxiv.org/abs/0808.1081
  33. UCLA
    http://www.astro.ucla.edu/~wright/ACC.html
  34. International Centre for Radio Astronomy Research
    https://cosmocalc.icrar.org/
  35. American Journal of Physics
    http://www.df.uba.ar/users/sgil/physics_paper_doc/papers_phys/cosmo/doppler_redshift.pdf
  36. Astrophysical Journal
    https://doi.org/10.1086%2F172179
  37. Harrison 2000, p. 302.
  38. Cosmology
    https://books.google.com/books?id=48C-ym2EmZkC&pg=PA11
  39. Einstein Gravity in a Nutshell
  40. Journal of the Royal Astronomical Society of Canada
    https://ui.adsabs.harvard.edu/abs/1930JRASC..24..390C
  41. Jahrbuch der Radioaktivität und Elektronik
    https://ui.adsabs.harvard.edu/abs/1908JRE.....4..411E
  42. Physical Review Letters
    https://doi.org/10.1103%2FPhysRevLett.4.337
  43. Astrophysical Journal
    https://ui.adsabs.harvard.edu/abs/1967ApJ...147...73S
  44. See Binney & Merrifeld 1998, Carroll & Ostlie 1996, Kutner 2003 for applications in astronomy.
  45. arXiv
    https://arxiv.org/abs/1303.5961
  46. Problems of extra-galactic research
  47. Astronomy and Astrophysics
    https://arxiv.org/abs/astro-ph/0003380
  48. swift.gsfc.nasa.gov
    https://swift.gsfc.nasa.gov/about_swift/redshift.html
  49. The Astrophysical Journal
    https://arxiv.org/abs/astro-ph/0605247
  50. Space Science Reviews
    https://authors.library.caltech.edu/104214/1/1988SSRv___47__275L.pdf
  51. Astronomy & Astrophysics
    https://www.aanda.org/articles/aa/abs/2018/09/aa32868-18/aa32868-18.html
  52. Astronomy and Astrophysics
    https://ui.adsabs.harvard.edu/abs/1970A&A.....7..381O
  53. Publications of the Astronomical Society of Japan
    https://ui.adsabs.harvard.edu/abs/1989PASJ...41..763A
  54. Radiative Processes in Astrophysics
  55. "Cosmic Detectives"
    http://www.esa.int/Our_Activities/Space_Science/Cosmic_detectives
  56. Journal of Astronomical History and Heritage
    https://arxiv.org/abs/1304.3627
  57. Peebles 1993, pp. 78–79.
  58. Physics LibreTexts
    https://phys.libretexts.org/Courses/Skidmore_College/Introduction_to_General_Relativity/07:_Cosmology/7.03:_Redshift
  59. Peebles 1993, p. 34.
  60. Monthly Notices of the Royal Astronomical Society
    https://doi.org/10.1111%2Fj.1365-2966.2008.14211.x
  61. Monthly Notices of the Royal Astronomical Society
    https://doi.org/10.1093%2Fmnras%2Fstt1517
  62. Physics LibreTexts
    https://phys.libretexts.org/Courses/University_of_California_Davis/Physics_156:_A_Cosmology_Workbook/01:_Workbook/1.07:_The_Distance-Redshift_Relation
  63. "The Nobel Prize in Physics 2011: Information for the Public"
    https://www.nobelprize.org/uploads/2019/05/popular-physicsprize2011.pdf
  64. "Redshift"
    https://lco.global/spacebook/light/redshift/
  65. Nature
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390484
  66. The Astrophysical Journal
    https://doi.org/10.3847%2F0004-637X%2F819%2F2%2F129
  67. Nature
    https://arxiv.org/abs/1503.00002
  68. The Astrophysical Journal
    https://arxiv.org/abs/0802.2506
  69. The Astrophysical Journal
    https://arxiv.org/abs/astro-ph/0411117
  70. Nature
    https://arxiv.org/abs/0906.1578
  71. MIT News
    https://news.mit.edu/2017/scientists-observe-supermassive-black-hole-infant-universe-1206
  72. Nature
    https://arxiv.org/abs/1712.01860
  73. Monthly Notices of the Royal Astronomical Society
    https://doi.org/10.1093%2Fmnras%2Fsty1996
  74. Nature
    https://arxiv.org/abs/astro-ph/0307410
  75. The Astrophysical Journal
    https://arxiv.org/abs/astro-ph/0208434
  76. The Astrophysical Journal
    https://arxiv.org/abs/astro-ph/0108145
  77. Scientific American
    https://ui.adsabs.harvard.edu/abs/2005SciAm.292c..36L
  78. Physics Reports
    https://arxiv.org/abs/astro-ph/0002044
  79. Monthly Notices of the Royal Astronomical Society: Letters
    https://doi.org/10.1111%2Fj.1745-3933.2006.00251.x
  80. Physics Reports
    https://arxiv.org/abs/astro-ph/0603494
  81. Physics-Uspekhi
    https://arxiv.org/abs/gr-qc/0504018
  82. The Astrophysical Journal
    https://arxiv.org/abs/1504.01734
  83. The New York Times
    https://www.nytimes.com/2015/06/18/science/space/astronomers-report-finding-earliest-stars-that-enriched-cosmos.html
  84. Science
    https://ui.adsabs.harvard.edu/abs/1989Sci...246..897G
  85. Huchra, John P.
    https://lweb.cfa.harvard.edu/~dfabricant/huchra/zcat/
  86. Monthly Notices of the Royal Astronomical Society
    https://doi.org/10.1111%2Fj.1365-2966.2005.09318.x
  87. msowww.anu.edu.au
    http://web.archive.org/web/20120322090959/http://msowww.anu.edu.au:80/2dFGRS/
  88. The Astronomical Journal
    https://doi.org/10.1086%2F500975
  89. The Astrophysical Journal Supplement Series
    https://doi.org/10.3847%2F1538-4365%2Facda98
  90. SSDS
    https://www.sdss4.org/science/
  91. Science objectives and early results of the DEEP2 redshift survey
    https://arxiv.org/abs/astro-ph/0209419
  92. The Astrophysical Journal Supplement Series
    https://arxiv.org/abs/1203.3192
  93. Dust Extinction and Reddening
    https://www.teachastronomy.com/textbook/The-Milky-Way/Dust-Extinction-and-Reddening/
  94. In Quest of the Universe
  95. The Astrophotography Manual
    https://doi.org/10.4324%2F9781315159225-42
  96. Publications of the Astronomical Observatory of Belgrade
    https://arxiv.org/abs/2412.11565
  97. Astrophysical Journal
    https://arxiv.org/abs/astro-ph/0409546
  98. "Gravitational Principles and Mathematics"
    https://antwrp.gsfc.nasa.gov/htmltest/gifcity/nslens_math.html
  99. American Journal of Physics
    https://arxiv.org/abs/astro-ph/9312003v1
  100. Modern Cosmology
  101. www.astro.umd.edu
    https://www.astro.umd.edu/~miller/teaching/questions/cosmology.html
Image
Source:
Tip: Wheel or +/− to zoom, drag to pan, Esc to close.