Topzle Topzle

Pi

Updated: 12/11/2025, 8:43:44 AM Wikipedia source

The number π ( ; spelled out as pi) is a mathematical constant, approximately equal to 3.14159, that is the ratio of a circle's circumference to its diameter. It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining π, to avoid relying on the definition of the length of a curve. The number π is an irrational number, meaning that it cannot be expressed exactly as a ratio of two integers, although fractions such as 22 7 {\displaystyle {\tfrac {22}{7}}} are commonly used to approximate it. Consequently, its decimal representation never ends, nor enters a permanently repeating pattern. It is a transcendental number, meaning that it cannot be a solution of an algebraic equation involving only finite sums, products, powers, and integers. The transcendence of π implies that it is impossible to solve the ancient challenge of squaring the circle with a compass and straightedge. The decimal digits of π appear to be randomly distributed, but no proof of this conjecture has been found. For thousands of years, mathematicians have attempted to extend their understanding of π, sometimes by computing its value to a high degree of accuracy. Ancient civilizations, including the Egyptians and Babylonians, required fairly accurate approximations of π for practical computations. Around 250 BC, the Greek mathematician Archimedes created an algorithm to approximate π with arbitrary accuracy. In the 5th century AD, Chinese mathematicians approximated π to seven digits, while Indian mathematicians made a five-digit approximation, both using geometrical techniques. The first computational formula for π, based on infinite series, was discovered a millennium later. The earliest known use of the Greek letter π to represent the ratio of a circle's circumference to its diameter was by the Welsh mathematician William Jones in 1706. The invention of calculus soon led to the calculation of hundreds of digits of π, enough for all practical scientific computations. Nevertheless, in the 20th and 21st centuries, mathematicians and computer scientists have pursued new approaches that, when combined with increasing computational power, extended the decimal representation of π to many trillions of digits. These computations are motivated by the development of efficient algorithms to calculate numeric series, as well as the human quest to break records. The extensive computations involved have also been used to test the correctness of new computer processors. Because it relates to a circle, π is found in many formulae in trigonometry and geometry, especially those concerning circles, ellipses and spheres. It is also found in formulae from other topics in science, such as cosmology, fractals, thermodynamics, mechanics, and electromagnetism. It also appears in areas having little to do with geometry, such as number theory and statistics, and in modern mathematical analysis can be defined without any reference to geometry. The ubiquity of π makes it one of the most widely known mathematical constants inside and outside of science. Several books devoted to π have been published, and record-setting calculations of the digits of π often result in news headlines.

Tables

· History › Infinite series › Rate of convergence
π = 4 1 − 4 3 + 4 5 − 4 7 + 4 9 − 4 11 + 4 13 + ⋯ {\displaystyle \pi ={\frac {4}{1}}-{\frac {4}{3}}+{\frac {4}{5}}-{\frac {4}{7}}+{\frac {4}{9}}-{\frac {4}{11}}+{\frac {4}{13}}+\cdots }
π = 4 1 − 4 3 + 4 5 − 4 7 + 4 9 − 4 11 + 4 13 + ⋯ {\displaystyle \pi ={\frac {4}{1}}-{\frac {4}{3}}+{\frac {4}{5}}-{\frac {4}{7}}+{\frac {4}{9}}-{\frac {4}{11}}+{\frac {4}{13}}+\cdots }
Infinite series for π
π = 4 1 − 4 3 + 4 5 − 4 7 + 4 9 − 4 11 + 4 13 + ⋯ {\displaystyle \pi ={\frac {4}{1}}-{\frac {4}{3}}+{\frac {4}{5}}-{\frac {4}{7}}+{\frac {4}{9}}-{\frac {4}{11}}+{\frac {4}{13}}+\cdots }
After 1st term
4.0000
After 2nd term
2.6666 ...
After 3rd term
3.4666 ...
After 4th term
2.8952 ...
After 5th term
3.3396 ...
Converges to:
π = 3.1415 ...
π = 3 + 4 2 × 3 × 4 − 4 4 × 5 × 6 + 4 6 × 7 × 8 − ⋯ {\displaystyle \pi ={3}+{\frac {4}{2\times 3\times 4}}-{\frac {4}{4\times 5\times 6}}+{\frac {4}{6\times 7\times 8}}-\cdots }
π = 3 + 4 2 × 3 × 4 − 4 4 × 5 × 6 + 4 6 × 7 × 8 − ⋯ {\displaystyle \pi ={3}+{\frac {4}{2\times 3\times 4}}-{\frac {4}{4\times 5\times 6}}+{\frac {4}{6\times 7\times 8}}-\cdots }
Infinite series for π
π = 3 + 4 2 × 3 × 4 − 4 4 × 5 × 6 + 4 6 × 7 × 8 − ⋯ {\displaystyle \pi ={3}+{\frac {4}{2\times 3\times 4}}-{\frac {4}{4\times 5\times 6}}+{\frac {4}{6\times 7\times 8}}-\cdots }
After 1st term
3.0000
After 2nd term
3.1666 ...
After 3rd term
3.1333 ...
After 4th term
3.1452 ...
After 5th term
3.1396 ...
Infinite series for π
After 1st term
After 2nd term
After 3rd term
After 4th term
After 5th term
Converges to:
π = 4 1 − 4 3 + 4 5 − 4 7 + 4 9 − 4 11 + 4 13 + ⋯ {\displaystyle \pi ={\frac {4}{1}}-{\frac {4}{3}}+{\frac {4}{5}}-{\frac {4}{7}}+{\frac {4}{9}}-{\frac {4}{11}}+{\frac {4}{13}}+\cdots }
4.0000
2.6666 ...
3.4666 ...
2.8952 ...
3.3396 ...
π = 3.1415 ...
π = 3 + 4 2 × 3 × 4 − 4 4 × 5 × 6 + 4 6 × 7 × 8 − ⋯ {\displaystyle \pi ={3}+{\frac {4}{2\times 3\times 4}}-{\frac {4}{4\times 5\times 6}}+{\frac {4}{6\times 7\times 8}}-\cdots }
3.0000
3.1666 ...
3.1333 ...
3.1452 ...
3.1396 ...

References

  1. Archimedes computed π as half the limit of the perimeters of regular polygons, inscribed in a unit circle, when the numb
  2. The polynomial shown is the first few terms of the Taylor series expansion of the sine function.
  3. The middle of these is due to the mid-17th century mathematician William Brouncker, see § Brouncker's formula.
  4. The specific integral that Weierstrass used was π = ∫
  5. Theorematum in libris Archimedis de sphaera et cylindro declarario
    https://books.google.com/books?id=KTgPAAAAQAAJ&pg=PP3
  6. "pi"
    http://dictionary.reference.com/browse/pi?s=t
  7. Arndt & Haenel 2006, p. 8.
  8. Principles of Mathematical Analysis
    https://archive.org/details/principlesofmath00rudi
  9. Arndt & Haenel 2006, p. 5.
  10. Russian Mathematical Surveys
    https://ui.adsabs.harvard.edu/abs/2008RuMaS..63..570S
  11. Arndt & Haenel 2006, pp. 22–23.
  12. Arndt & Haenel 2006, pp. 22, 28–30.
  13. Arndt & Haenel 2006, p. 3.
  14. Arndt & Haenel 2006, p. 6.
  15. Posamentier & Lehmann 2004, p. 25.
  16. Eymard & Lafon 2004, p. 129.
  17. History of Pi
    https://archive.org/details/scienceitstimesu0000unse
  18. Transcendental Numbers
    https://link.springer.com/book/10.1007/978-1-4939-0832-5
  19. MathWorld
    https://mathworld.wolfram.com/Lindemann-WeierstrassTheorem.html
  20. Eymard & Lafon 2004, p. 78.
  21. Arndt & Haenel 2006, p. 33.
  22. Nieuw Archief voor Wiskunde
    https://mathscinet.ams.org/mathscinet-getitem?mr=1743850
  23. The American Mathematical Monthly
    https://doi.org/10.2307%2F2589152
  24. Arndt & Haenel 2006, p. 240.
  25. Arndt & Haenel 2006, p. 242.
  26. Journal for the History of Astronomy
    https://ui.adsabs.harvard.edu/abs/1978JHA.....9...65K
  27. Abramson 2014, Section 8.5: Polar form of complex numbers.
    https://openstax.org/books/precalculus/pages/8-5-polar-form-of-complex-numbers
  28. Bronshteĭn & Semendiaev 1971, p. 592.
  29. E: The Story of a Number
  30. Andrews, Askey & Roy 1999, p. 14.
  31. Arndt & Haenel 2006, p. 167.
  32. The Shape of the Great Pyramid
    https://books.google.com/books?id=066T3YLuhA0C&pg=67
  33. Mathematics in India
    https://books.google.com/books?id=DHvThPNp9yMC&pg=PA27
  34. Arndt & Haenel 2006, p. 170.
  35. Arndt & Haenel 2006, pp. 175, 205.
  36. From Alexandria, through Baghdad: Surveys and studies in the ancient Greek and medieval Islamic mathematical sciences in honor of J. L. Berggren
    https://doi.org/10.1007%2F978-3-642-36736-6_24
  37. Arndt & Haenel 2006, p. 171.
  38. Arndt & Haenel 2006, p. 176.
  39. Boyer & Merzbach 1991, p. 168.
  40. Arndt & Haenel 2006, pp. 15–16, 175, 184–186, 205. Grienberger achieved 39 digits in 1630; Sharp 71 digits in 1699.
  41. Arndt & Haenel 2006, pp. 176–177.
  42. Boyer & Merzbach 1991, p. 202.
  43. Arndt & Haenel 2006, p. 177.
  44. Arndt & Haenel 2006, p. 178.
  45. Arndt & Haenel 2006, p. 179.
  46. Arndt & Haenel 2006, p. 180.
  47. Missouri Journal of Mathematical Sciences
    https://doi.org/10.35834%2Fmjms%2F1312233136
  48. Arndt & Haenel 2006, p. 182.
  49. Arndt & Haenel 2006, pp. 182–183.
  50. Arndt & Haenel 2006, p. 183.
  51. Elementa Trigonometrica
    https://web.archive.org/web/20140201234124/http://librarsi.comune.palermo.it/gesuiti2/06.04.01.pdf
  52. The Birth of Numerical Analysis
    https://www.worldscientific.com/doi/10.1142/9789812836267_0001
  53. Arndt & Haenel 2006, pp. 185–191.
  54. Mathematics Magazine
    https://web.archive.org/web/20230314224252/https://www.maa.org/sites/default/files/images/upload_library/22/Allendoerfer/1991/0025570x.di021167.02p0073q.pdf
  55. Arndt & Haenel 2006, pp. 185–186.
  56. The Crest of the Peacock: Non-European Roots of Mathematics
    https://books.google.com/books?id=c-xT0KNJp0cC&pg=PA264
  57. Andrews, Askey & Roy 1999, p. 59.
  58. Ganita Bharati
  59. Variorum de rebus mathematicis responsorum
    https://books.google.com/books?id=7_BCAAAAcAAJ
  60. Arndt & Haenel 2006, p. 187.
  61. Arndt & Haenel 2006, p. 188. Newton quoted by Arndt.
  62. Annales Universitatis Scientiarum Budapestiensis (Sectio Computatorica)
    https://web.archive.org/web/20230307164822/http://ac.inf.elte.hu/Vol_004_1983/075.pdf
  63. Eymard & Lafon 2004, pp. 53–54.
  64. Mathematical Gazette
    https://web.archive.org/web/20190504091131/https://www.cambridge.org/core/services/aop-cambridge-core/content/view/F7C083868DEB95FE049CD44163367592/S0025557200002928a.pdf/div-class-title-fast-formulas-for-slowly-convergent-alternating-series-div.pdf
  65. Arndt & Haenel 2006, p. 189.
  66. Synopsis Palmariorum Matheseos
    https://archive.org/details/SynopsisPalmariorumMatheseosOrANewIntroductionToTheMathematics/page/n283/
  67. Archive for History of Exact Sciences
    https://doi.org/10.1007%2FBF00384331
  68. Arndt & Haenel 2006, pp. 192–193.
  69. Arndt & Haenel 2006, pp. 72–74.
  70. American Mathematical Monthly
    https://web.archive.org/web/20230307164817/https://www.maa.org/sites/default/files/pdf/pubs/amm_supplements/Monthly_Reference_7.pdf
  71. Series and Products in the Development of Mathematics
    https://archive.org/details/mathematicalpape0004newt/page/604/mode/2up
  72. How Euler Did It
    http://eulerarchive.maa.org/hedi/HEDI-2009-02.pdf
  73. Arndt & Haenel 2006, pp. 192–196, 205.
  74. Arndt & Haenel 2006, pp. 194–196.
  75. American Scientist
    https://www.americanscientist.org/article/pencil-paper-and-pi
  76. Scientific American
    https://ui.adsabs.harvard.edu/abs/1988SciAm.258b.112B
  77. Arndt & Haenel 2006, pp. 69–72.
  78. American Mathematical Monthly
    https://doi.org/10.2307%2F2324715
  79. Arndt & Haenel 2006, Formula 16.10, p. 223.
  80. The Penguin Dictionary of Curious and Interesting Numbers
  81. Posamentier & Lehmann 2004, p. 284.
  82. Lambert, Johann, "Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmique
  83. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin
    https://archive.org/details/sitzungsberichte1882deutsch/page/679
  84. Arndt & Haenel 2006, p. 196.
  85. Hardy and Wright 1938 and 2000: 177 footnote § 11.13–14 references Lindemann's proof as appearing at Math. Ann. 20 (1882
  86. cf Hardy and Wright 1938 and 2000:177 footnote § 11.13–14. The proofs that e and π are transcendental can be found on pp
  87. Clavis Mathematicæ
    https://archive.org/details/bub_gb_ddMxgr27tNkC
  88. Arndt & Haenel 2006, p. 166.
  89. A History of Mathematical Notations: Vol. II
    https://books.google.com/books?id=bT5suOONXlgC&pg=PA9
  90. History of Mathematics
    https://books.google.com/books?id=uTytJGnTf1kC&pg=PA312
  91. e
    https://doi.org/10.2307%2F2972388
  92. The mathematical works of Isaac Barrow
    https://archive.org/stream/mathematicalwor00whewgoog#page/n405/mode/1up
  93. Philosophical Transactions
    https://archive.org/download/crossref-pre-1909-scholarly-works/10.1098%252Frstl.1684.0084.zip/10.1098%252Frstl.1695.0114.pdf
  94. Arndt & Haenel 2006, p. 165: A facsimile of Jones' text is in Berggren, Borwein & Borwein 1997, pp. 108–109.
  95. Cursus Mathematicus
    https://books.google.com/books?id=NmYVAAAAQAAJ&pg=PA282
  96. Commentarii Academiae Scientiarum Imperialis Petropolitana
    http://eulerarchive.maa.org/docs/originals/E007.pdf#page=5
  97. Mechanica sive motus scientia analytice exposita. (cum tabulis)
    https://books.google.com/books?id=jgdTAAAAcAAJ&pg=PA113
  98. Leonhardi Euleri opera omnia. 1, Opera mathematica. Volumen VIII, Leonhardi Euleri introductio in analysin infinitorum. Tomus primus / ediderunt Adolf Krazer et Ferdinand Rudio
    http://gallica.bnf.fr/ark:/12148/bpt6k69587/f155
  99. Cursus Mathematicus: Elementorum Analyseos Infinitorum Elementorum Analyseos Infinitorvm
    https://books.google.com/books?id=P-hEAAAAcAAJ&pg=PA374
  100. Arndt & Haenel 2006, pp. 17–19.
  101. The Washington Post
    https://www.independent.co.uk/news/science/the-big-question-how-close-have-we-come-to-knowing-the-precise-value-of-pi-1861197.html
  102. Arndt & Haenel 2006, pp. 17–18.
  103. The Mathematical Intelligencer
    https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.7085
  104. Arndt & Haenel 2006, p. 205.
  105. Arndt & Haenel 2006, p. 197.
  106. Mathematical Tables and Other Aids to Computation
    https://doi.org/10.2307%2F2002695
  107. Math. Tabl. Aids. Comp
    https://doi.org/10.2307%2F2002052
  108. Arndt & Haenel 2006, pp. 15–17.
  109. Arndt & Haenel 2006, p. 131.
  110. Arndt & Haenel 2006, pp. 132, 140.
  111. Arndt & Haenel 2006, p. 87.
  112. Pi and the AGM: a Study in Analytic Number Theory and Computational Complexity
  113. Bailey, David H.
    http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/dhb-kanada.pdf
  114. Arndt & Haenel 2006, pp. 103–104.
  115. Arndt & Haenel 2006, p. 104.
  116. Arndt & Haenel 2006, pp. 104, 206.
  117. Arndt & Haenel 2006, pp. 110–111.
  118. Eymard & Lafon 2004, p. 254.
  119. Pi: The Next Generation, A Sourcebook on the Recent History of Pi and Its Computation
    https://books.google.com/books?id=K26zDAAAQBAJ&pg=PA469
  120. The New Stack
    https://thenewstack.io/how-googles-emma-haruka-iwao-helped-set-a-new-record-for-pi/
  121. Google Cloud Platform
    https://cloud.google.com/blog/products/compute/calculating-31-4-trillion-digits-of-archimedes-constant-on-google-cloud
  122. PSLQ means Partial Sum of Least Squares.
  123. Plouffe, Simon
    http://plouffe.fr/simon/inspired2.pdf
  124. Arndt & Haenel 2006, p. 39.
  125. The American Mathematical Monthly
    https://doi.org/10.2307%2F2317945
  126. Arndt & Haenel 2006, pp. 39–40. Posamentier & Lehmann 2004, p. 105.
  127. Transactions of the American Mathematical Society
    https://doi.org/10.1090%2Fs0002-9947-1960-0114110-9
  128. Arndt & Haenel 2006, p. 43.Posamentier & Lehmann 2004, pp. 105–108.
  129. Arndt & Haenel 2006, pp. 77–84.
  130. The American Mathematical Monthly
    https://www.cs.ox.ac.uk/jeremy.gibbons/publications/spigot.pdf
  131. Arndt & Haenel 2006, p. 77.
  132. American Mathematical Monthly
    https://doi.org/10.2307%2F2975006
  133. Arndt & Haenel 2006, pp. 117, 126–128.
  134. Mathematics of Computation
    http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/digits.pdf
  135. Bellard, Fabrice
    https://web.archive.org/web/20070912084453/http://fabrice.bellard.free.fr/pi/pi_bin/pi_bin.html
  136. BBC News
    https://www.bbc.co.uk/news/technology-11313194
  137. Plouffe, Simon
    https://arxiv.org/abs/2201.12601
  138. MathWorld
    https://mathworld.wolfram.com/.html
  139. Bronshteĭn & Semendiaev 1971, pp. 200, 209.
  140. MathWorld
    https://mathworld.wolfram.com/Circumference.html
  141. MathWorld
    https://mathworld.wolfram.com/Ellipse.html
  142. Bodies of Constant Width: An Introduction to Convex Geometry with Applications
    https://doi.org/10.1007%2F978-3-030-03868-7
  143. Calculus
    https://openstax.org/books/calculus-volume-1/pages/5-5-substitution
  144. Mathematics Unlimited — 2001 and Beyond
    https://doi.org/10.1007%2F978-3-642-56478-9_39
  145. Abramson 2014, Section 5.1: Angles.
    https://openstax.org/books/precalculus/pages/5-1-angles
  146. Bronshteĭn & Semendiaev 1971, pp. 210–211.
  147. Methods of mathematical physics
  148. Dym & McKean 1972, p. 47.
  149. Calculus
  150. Remmert 2012, p. 129.
  151. Mathematische Werke
    https://archive.org/details/mathematischewer01weieuoft/page/51/
  152. Die Elemente der Mathematik
    https://archive.org/details/dieelementederm02baltgoog
  153. Einführung in die Differentialrechnung und Integralrechnung
  154. Real and complex analysis
  155. Complex analysis
  156. Topologie generale
  157. Fonctions d'une variable réelle
  158. Nature Series: Popular Lectures and Addresses
  159. Isoperimetric inequalities
  160. Annali di Matematica Pura ed Applicata
    https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.615.4193
  161. arXiv
    https://arxiv.org/abs/1110.2960
  162. Journal de Mathématiques Pures et Appliquées
    https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.7077
  163. Archive for Rational Mechanics and Analysis
    https://ui.adsabs.harvard.edu/abs/1960ArRMA...5..286P
  164. Harmonic analysis in phase space
  165. Bulletin of the American Mathematical Society
    https://doi.org/10.1090%2FS0273-0979-1980-14825-9
  166. Feller, W. An Introduction to Probability Theory and Its Applications, Vol. 1, Wiley, 1968, pp. 174–190.
  167. Bronshteĭn & Semendiaev 1971, pp. 106–107, 744, 748.
  168. Dym & McKean 1972, Section 2.7.
  169. Fourier analysis on Euclidean spaces
  170. A Comprehensive Introduction to Differential Geometry
  171. Foundations of Differential Geometry
  172. Complex analysis
  173. Mathematical Physics
  174. Div, Grad, Curl, and All That: An Informal Text on Vector Calculus
  175. The pleasures of pi, e and other interesting numbers
  176. Einstein's Field Equations and Their Physical Implications
  177. Elliptic Partial Differential Equations of Second Order
  178. Bronshteĭn & Semendiaev 1971, pp. 191–192.
  179. The Gamma Function
  180. Partial Differential Equations
  181. Bronshteĭn & Semendiaev 1971, p. 190.
  182. Advances in Geometry
    https://arxiv.org/abs/1205.1270
  183. An Introduction to the Theory of Numbers
  184. Excursions in Number Theory
  185. Arndt & Haenel 2006, p. 43.
  186. Algebraic Groups and Number Theory
  187. Proceedings of the American Mathematical Society
    https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.5774
  188. Journal of Mathematical Physics
    https://arxiv.org/abs/1510.07813
  189. Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965)
    https://mathscinet.ams.org/mathscinet-getitem?mr=0217026
  190. Dym & McKean 1972, Chapter 4.
  191. Tata Lectures on Theta I
  192. Brownian motion and classical potential theory
  193. Introduction to the Theory of Fourier Integrals
  194. Singular Integrals and Differentiability Properties of Functions
  195. Fractals
    https://web.archive.org/web/20111027155739/http://home.comcast.net/~davejanelle/mandel.pdf
  196. Fundamentals of Physics
  197. College Physics 2e
    https://openstax.org/books/college-physics-2e/pages/29-7-probability-the-heisenberg-uncertainty-principle
  198. Quantum Field Theory
    https://books.google.com/books?id=4MwsAwAAQBAJ
  199. Classical Theory of Structures Based on the Differential Equation
  200. An Introduction to Fluid Dynamics
  201. Arndt & Haenel 2006, pp. 44–45.
  202. "Most Pi Places Memorized" Archived 14 February 2016 at the Wayback Machine, Guinness World Records.
    http://www.guinnessworldrecords.com/world-records/most-pi-places-memorised
  203. The Japan Times
    http://www.japantimes.co.jp/life/2006/12/17/general/how-can-anyone-remember-100000-numbers/
  204. Pi (π) in Nature, Art, and Culture
    https://books.google.com/books?id=tAsOEAAAQBAJ&pg=PA97
  205. Neurocase
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323087
  206. Keith, Mike
    http://www.cadaeic.net/comments.htm
  207. Not A Wake: A dream embodying (pi)'s digits fully for 10,000 decimals
  208. Keys to Infinity
    https://archive.org/details/keystoinfinity00clif/page/59
  209. Posamentier & Lehmann 2004, p. 118. Arndt & Haenel 2006, p. 50.
  210. Math Goes to the Movies
  211. The Independent
    http://gaffa.org/reaching/rev_aer_UK5.html
  212. The Mathematics Teacher
    https://www.jstor.org/stable/27966082
  213. USAToday.com
    https://www.usatoday.com/story/news/nation-now/2015/03/14/pi-day-kids-videos/24753169/
  214. The Independent
    https://www.independent.co.uk/news/science/pi-day-march-14-maths-google-doodle-pie-baking-celebrate-30-anniversary-a8254036.html
  215. Numericon: A Journey through the Hidden Lives of Numbers
    https://books.google.com/books?id=IbR-BAAAQBAJ&pg=PT133
  216. The Mathematical Intelligencer
    http://www.math.utah.edu/~palais/pi.pdf
  217. Telegraph India
    https://web.archive.org/web/20130713084345/http://www.telegraphindia.com/1110630/jsp/nation/story_14178997.jsp
  218. Science News
    https://www.sciencenews.org/blog/science-the-public/forget-pi-day-we-should-be-celebrating-tau-day
  219. Mathematics Magazine
    https://doi.org/10.2307%2F2689499
  220. TeX Mag
    http://www.ntg.nl/maps/05/34.pdf
Image
Source:
Tip: Wheel or +/− to zoom, drag to pan, Esc to close.