Topzle Topzle

Periodic table

Updated: Wikipedia source

Periodic table

The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows ("periods") and columns ("groups"). An icon of chemistry, the periodic table is widely used in physics and other sciences. It is a depiction of the periodic law, which states that when the elements are arranged in order of their atomic numbers an approximate recurrence of their properties is evident. The table is divided into four roughly rectangular areas called blocks. Elements in the same group tend to show similar chemical characteristics. Vertical, horizontal and diagonal trends characterize the periodic table. Metallic character increases going down a group and from right to left across a period. Nonmetallic character increases going from the bottom left of the periodic table to the top right. The first periodic table to become generally accepted was that of the Russian chemist Dmitri Mendeleev in 1869; he formulated the periodic law as a dependence of chemical properties on atomic mass. As not all elements were then known, there were gaps in his periodic table, and Mendeleev successfully used the periodic law to predict some properties of some of the missing elements. The periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of atomic numbers and associated pioneering work in quantum mechanics, both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with Glenn T. Seaborg's discovery that the actinides were in fact f-block rather than d-block elements. The periodic table and law have become a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 exist; to go further, it was necessary to synthesize new elements in the laboratory. By 2010, the first 118 elements were known, thereby completing the first seven rows of the table; however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table beyond these seven rows, though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in the table. Many alternative representations of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table.

Tables

· Structure › Electron configurations
Orbital
Orbital
ℓ =
Orbital
0
s
1
p
2
d
3
f
4
g
5
h
6
i
n = 1
n = 1
ℓ =
n = 1
0
1s
2
2
n = 2
n = 2
ℓ =
n = 2
0
2s
1
2p
3
8
n = 3
n = 3
ℓ =
n = 3
0
3s
1
3p
2
3d
4
18
n = 4
n = 4
ℓ =
n = 4
0
4s
1
4p
2
4d
3
4f
5
32
n = 5
n = 5
ℓ =
n = 5
0
5s
1
5p
2
5d
3
5f
4
5g
6
50
n = 6
n = 6
ℓ =
n = 6
0
6s
1
6p
2
6d
3
6f
4
6g
5
6h
Shell capacity (2n2)
72
n = 7
n = 7
ℓ =
n = 7
0
7s
1
7p
2
7d
3
7f
4
7g
5
7h
6
7i
Shell capacity (2n2)
98
Subshell capacity (4ℓ+2)
Subshell capacity (4ℓ+2)
ℓ =
Subshell capacity (4ℓ+2)
0
2
1
6
2
10
3
14
4
18
5
22
6
26
ℓ =
0
1
2
3
4
5
6
Shell capacity (2n2)
Orbital
s
p
d
f
g
h
i
n = 1
1s
2
n = 2
2s
2p
8
n = 3
3s
3p
3d
18
n = 4
4s
4p
4d
4f
32
n = 5
5s
5p
5d
5f
5g
50
n = 6
6s
6p
6d
6f
6g
6h
72
n = 7
7s
7p
7d
7f
7g
7h
7i
98
Subshell capacity (4ℓ+2)
2
6
10
14
18
22
26
· Structure › Electron configurations › Order of subshell filling
3Li
3Li
1H
3Li
Col 2
4Be
Col 3
5B
Col 4
6C
Col 5
7N
Col 6
8O
Col 7
9F
2He
10Ne
2×1 = 2 elements1s 0p
2×(1+3) = 8 elements2s 2p
11Na
11Na
1H
11Na
Col 2
12Mg
Col 3
13Al
Col 4
14Si
Col 5
15P
Col 6
16S
Col 7
17Cl
2He
18Ar
2×1 = 2 elements1s 0p
2×(1+3) = 8 elements3s 3p
1H
2He
2×1 = 2 elements1s 0p
3Li
4Be
5B
6C
7N
8O
9F
10Ne
2×(1+3) = 8 elements2s 2p
11Na
12Mg
13Al
14Si
15P
16S
17Cl
18Ar
2×(1+3) = 8 elements3s 3p
· Structure › Electron configurations › Order of subshell filling
3Li
3Li
1H
3Li
Col 2
4Be
Col 13
5B
Col 14
6C
Col 15
7N
Col 16
8O
Col 17
9F
2He
10Ne
2×1 = 2 elements1s 0d 0p
2×(1+3) = 8 elements2s 0d 2p
11Na
11Na
1H
11Na
Col 2
12Mg
Col 13
13Al
Col 14
14Si
Col 15
15P
Col 16
16S
Col 17
17Cl
2He
18Ar
2×1 = 2 elements1s 0d 0p
2×(1+3) = 8 elements3s 0d 3p
19K
19K
1H
19K
Col 2
20Ca
Col 3
21Sc
Col 4
22Ti
Col 5
23V
Col 6
24Cr
Col 7
25Mn
Col 8
26Fe
Col 9
27Co
Col 10
28Ni
Col 11
29Cu
Col 12
30Zn
Col 13
31Ga
Col 14
32Ge
Col 15
33As
Col 16
34Se
Col 17
35Br
2He
36Kr
2×1 = 2 elements1s 0d 0p
2×(1+3+5) = 18 elements4s 3d 4p
37Rb
37Rb
1H
37Rb
Col 2
38Sr
Col 3
39Y
Col 4
40Zr
Col 5
41Nb
Col 6
42Mo
Col 7
43Tc
Col 8
44Ru
Col 9
45Rh
Col 10
46Pd
Col 11
47Ag
Col 12
48Cd
Col 13
49In
Col 14
50Sn
Col 15
51Sb
Col 16
52Te
Col 17
53I
2He
54Xe
2×1 = 2 elements1s 0d 0p
2×(1+3+5) = 18 elements5s 4d 5p
1H
2He
2×1 = 2 elements1s 0d 0p
3Li
4Be
5B
6C
7N
8O
9F
10Ne
2×(1+3) = 8 elements2s 0d 2p
11Na
12Mg
13Al
14Si
15P
16S
17Cl
18Ar
2×(1+3) = 8 elements3s 0d 3p
19K
20Ca
21Sc
22Ti
23V
24Cr
25Mn
26Fe
27Co
28Ni
29Cu
30Zn
31Ga
32Ge
33As
34Se
35Br
36Kr
2×(1+3+5) = 18 elements4s 3d 4p
37Rb
38Sr
39Y
40Zr
41Nb
42Mo
43Tc
44Ru
45Rh
46Pd
47Ag
48Cd
49In
50Sn
51Sb
52Te
53I
54Xe
2×(1+3+5) = 18 elements5s 4d 5p
3Li
3Li
1H
3Li
Col 2
4Be
Col 27
5B
Col 28
6C
Col 29
7N
Col 30
8O
Col 31
9F
2He
10Ne
2×1 = 2 elements1s 0f 0d 0p
2×(1+3) = 8 elements2s 0f 0d 2p
11Na
11Na
1H
11Na
Col 2
12Mg
Col 27
13Al
Col 28
14Si
Col 29
15P
Col 30
16S
Col 31
17Cl
2He
18Ar
2×1 = 2 elements1s 0f 0d 0p
2×(1+3) = 8 elements3s 0f 0d 3p
19K
19K
1H
19K
Col 2
20Ca
Col 17
21Sc
Col 18
22Ti
Col 19
23V
Col 20
24Cr
Col 21
25Mn
Col 22
26Fe
Col 23
27Co
Col 24
28Ni
Col 25
29Cu
Col 26
30Zn
Col 27
31Ga
Col 28
32Ge
Col 29
33As
Col 30
34Se
Col 31
35Br
2He
36Kr
2×1 = 2 elements1s 0f 0d 0p
2×(1+3+5) = 18 elements4s 0f 3d 4p
37Rb
37Rb
1H
37Rb
Col 2
38Sr
Col 17
39Y
Col 18
40Zr
Col 19
41Nb
Col 20
42Mo
Col 21
43Tc
Col 22
44Ru
Col 23
45Rh
Col 24
46Pd
Col 25
47Ag
Col 26
48Cd
Col 27
49In
Col 28
50Sn
Col 29
51Sb
Col 30
52Te
Col 31
53I
2He
54Xe
2×1 = 2 elements1s 0f 0d 0p
2×(1+3+5) = 18 elements5s 0f 4d 5p
55Cs
55Cs
1H
55Cs
Col 2
56Ba
Col 3
57La
Col 4
58Ce
Col 5
59Pr
Col 6
60Nd
Col 7
61Pm
Col 8
62Sm
Col 9
63Eu
Col 10
64Gd
Col 11
65Tb
Col 12
66Dy
Col 13
67Ho
Col 14
68Er
Col 15
69Tm
Col 16
70Yb
Col 17
71Lu
Col 18
72Hf
Col 19
73Ta
Col 20
74W
Col 21
75Re
Col 22
76Os
Col 23
77Ir
Col 24
78Pt
Col 25
79Au
Col 26
80Hg
Col 27
81Tl
Col 28
82Pb
Col 29
83Bi
Col 30
84Po
Col 31
85At
2He
86Rn
2×1 = 2 elements1s 0f 0d 0p
2×(1+3+5+7) = 32 elements6s 4f 5d 6p
87Fr
87Fr
1H
87Fr
Col 2
88Ra
Col 3
89Ac
Col 4
90Th
Col 5
91Pa
Col 6
92U
Col 7
93Np
Col 8
94Pu
Col 9
95Am
Col 10
96Cm
Col 11
97Bk
Col 12
98Cf
Col 13
99Es
Col 14
100Fm
Col 15
101Md
Col 16
102No
Col 17
103Lr
Col 18
104Rf
Col 19
105Db
Col 20
106Sg
Col 21
107Bh
Col 22
108Hs
Col 23
109Mt
Col 24
110Ds
Col 25
111Rg
Col 26
112Cn
Col 27
113Nh
Col 28
114Fl
Col 29
115Mc
Col 30
116Lv
Col 31
117Ts
2He
118Og
2×1 = 2 elements1s 0f 0d 0p
2×(1+3+5+7) = 32 elements7s 5f 6d 7p
1H
2He
2×1 = 2 elements1s 0f 0d 0p
3Li
4Be
5B
6C
7N
8O
9F
10Ne
2×(1+3) = 8 elements2s 0f 0d 2p
11Na
12Mg
13Al
14Si
15P
16S
17Cl
18Ar
2×(1+3) = 8 elements3s 0f 0d 3p
19K
20Ca
21Sc
22Ti
23V
24Cr
25Mn
26Fe
27Co
28Ni
29Cu
30Zn
31Ga
32Ge
33As
34Se
35Br
36Kr
2×(1+3+5) = 18 elements4s 0f 3d 4p
37Rb
38Sr
39Y
40Zr
41Nb
42Mo
43Tc
44Ru
45Rh
46Pd
47Ag
48Cd
49In
50Sn
51Sb
52Te
53I
54Xe
2×(1+3+5) = 18 elements5s 0f 4d 5p
55Cs
56Ba
57La
58Ce
59Pr
60Nd
61Pm
62Sm
63Eu
64Gd
65Tb
66Dy
67Ho
68Er
69Tm
70Yb
71Lu
72Hf
73Ta
74W
75Re
76Os
77Ir
78Pt
79Au
80Hg
81Tl
82Pb
83Bi
84Po
85At
86Rn
2×(1+3+5+7) = 32 elements6s 4f 5d 6p
87Fr
88Ra
89Ac
90Th
91Pa
92U
93Np
94Pu
95Am
96Cm
97Bk
98Cf
99Es
100Fm
101Md
102No
103Lr
104Rf
105Db
106Sg
107Bh
108Hs
109Mt
110Ds
111Rg
112Cn
113Nh
114Fl
115Mc
116Lv
117Ts
118Og
2×(1+3+5+7) = 32 elements7s 5f 6d 7p
Number of valence electrons · Periodic trends › Valence and oxidation states
1
1
Col 1
1
1
H1
Col 4
He2
2
2
Col 1
2
1
Li1
2
Be2
Col 5
B3
Col 6
C4
Col 7
N5
Col 8
O6
Col 9
F7
Col 10
Ne8
3
3
Col 1
3
1
Na1
2
Mg2
Col 5
Al3
Col 6
Si4
Col 7
P5
Col 8
S6
Col 9
Cl7
Col 10
Ar8
4
4
Col 1
4
1
K1
2
Ca2
Col 5
Sc3
Col 6
Ti4
Col 7
V5
Col 8
Cr6
Col 9
Mn7
Col 10
Fe8
Col 11
Co9
Col 12
Ni10
Col 13
Cu11
Col 14
Zn12
Col 15
Ga3
Col 16
Ge4
Col 17
As5
3
Se6
4
Br7
5
Kr8
5
5
Col 1
5
1
Rb1
2
Sr2
Col 5
Y3
Col 6
Zr4
Col 7
Nb5
Col 8
Mo6
Col 9
Tc7
Col 10
Ru8
Col 11
Rh9
Col 12
Pd10
Col 13
Ag11
Col 14
Cd12
Col 15
In3
Col 16
Sn4
Col 17
Sb5
3
Te6
4
I7
5
Xe8
6
6
Col 1
6
1
Cs1
2
Ba2
Col 4
La3
Col 5
Ce4
Col 6
Pr5
Col 7
Nd6
Col 8
Pm7
Col 9
Sm8
Col 10
Eu9
Col 11
Gd10
Col 12
Tb11
Col 13
Dy12
Col 14
Ho13
Col 15
Er14
Col 16
Tm15
Col 17
Yb16
3
Lu3
4
Hf4
5
Ta5
6
W6
7
Re7
8
Os8
9
Ir9
10
Pt10
11
Au11
12
Hg12
13
Tl3
14
Pb4
15
Bi5
16
Po6
17
At7
18
Rn8
7
7
Col 1
7
1
Fr1
2
Ra2
Col 4
Ac3
Col 5
Th4
Col 6
Pa5
Col 7
U6
Col 8
Np7
Col 9
Pu8
Col 10
Am9
Col 11
Cm10
Col 12
Bk11
Col 13
Cf12
Col 14
Es13
Col 15
Fm14
Col 16
Md15
Col 17
No16
3
Lr3
4
Rf4
5
Db5
6
Sg6
7
Bh7
8
Hs8
9
Mt9
10
Ds10
11
Rg11
12
Cn12
13
Nh3
14
Fl4
15
Mc5
16
Lv6
17
Ts7
18
Og8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
1
H1
He2
2
Li1
Be2
B3
C4
N5
O6
F7
Ne8
3
Na1
Mg2
Al3
Si4
P5
S6
Cl7
Ar8
4
K1
Ca2
Sc3
Ti4
V5
Cr6
Mn7
Fe8
Co9
Ni10
Cu11
Zn12
Ga3
Ge4
As5
Se6
Br7
Kr8
5
Rb1
Sr2
Y3
Zr4
Nb5
Mo6
Tc7
Ru8
Rh9
Pd10
Ag11
Cd12
In3
Sn4
Sb5
Te6
I7
Xe8
6
Cs1
Ba2
La3
Ce4
Pr5
Nd6
Pm7
Sm8
Eu9
Gd10
Tb11
Dy12
Ho13
Er14
Tm15
Yb16
Lu3
Hf4
Ta5
W6
Re7
Os8
Ir9
Pt10
Au11
Hg12
Tl3
Pb4
Bi5
Po6
At7
Rn8
7
Fr1
Ra2
Ac3
Th4
Pa5
U6
Np7
Pu8
Am9
Cm10
Bk11
Cf12
Es13
Fm14
Md15
No16
Lr3
Rf4
Db5
Sg6
Bh7
Hs8
Mt9
Ds10
Rg11
Cn12
Nh3
Fl4
Mc5
Lv6
Ts7
Og8
Bohr's electron configurations for light elements · History › Electron shells
4
4
Element
4
Electrons per shell
2,2
6
6
Element
6
Electrons per shell
2,4
7
7
Element
7
Electrons per shell
4,3
8
8
Element
8
Electrons per shell
4,2,2
9
9
Element
9
Electrons per shell
4,4,1
10
10
Element
10
Electrons per shell
8,2
11
11
Element
11
Electrons per shell
8,2,1
16
16
Element
16
Electrons per shell
8,4,2,2
18
18
Element
18
Electrons per shell
8,8,2
Element
Electrons per shell
4
2,2
6
2,4
7
4,3
8
4,2,2
9
4,4,1
10
8,2
11
8,2,1
16
8,4,2,2
18
8,8,2

References

  1. The question of how many natural elements there are is quite complicated and is not fully resolved. The heaviest element
  2. Some isotopes currently considered stable are theoretically expected to be radioactive with extremely long half-lives: f
  3. The half-life of plutonium's most stable isotope is just long enough that it should also be a primordial element. A 1971
  4. Tiny traces of plutonium are also continually brought to Earth via cosmic rays.
  5. See for example the periodic table poster sold by Sigma-Aldrich.
    https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209
  6. Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn
  7. Authors differ on whether the n + ℓ rule has yet been derived from quantum mechanics. Scerri claims that it has not, des
  8. Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones: 1s ≪ 2s < 2
  9. In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of mult
  10. Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they
  11. Properties of the p-block elements nevertheless do affect the succeeding s-block elements. The 3s shell in sodium is abo
  12. There are many lower oxides as well: for example, phosphorus in group 15 forms two oxides, P2O3 and P2O5.
  13. The normally "forbidden" intermediate oxidation states may be stabilized by forming dimers, as in [Cl3Ga–GaCl3]2− (galli
  14. The boundary between dispersion forces and metallic bonding is gradual, like that between ionic and covalent bonding. Ch
  15. All this describes the situation at standard pressure. Under sufficiently high pressure, the band gaps of any solid drop
  16. Descriptions of the structures formed by the elements can be found throughout Greenwood and Earnshaw. There are two bord
  17. See melting points of the elements (data page). The same is probably true of francium, but due to its extreme instabilit
  18. See lists of metalloids. For example, a periodic table used by the American Chemical Society includes polonium as a meta
  19. Demkov and Ostrovsky consider the potential U 1
  20. For example, the early actinides continue to behave more like the d-block transition metals in their propensity towards
  21. Technetium, promethium, astatine, neptunium, and plutonium were eventually discovered to occur in nature as well, albeit
  22. IUPAC | International Union of Pure and Applied Chemistry
    https://iupac.org/what-we-do/periodic-table-of-elements/
  23. Pure and Applied Chemistry
    https://doi.org/10.1515%2Fpac-2015-0305
  24. Pure and Applied Chemistry
    https://www.degruyter.com/document/doi/10.1515/pac-2019-0603/html
  25. New Journal of Chemistry
    https://doi.org/10.1039%2FC6NJ02076C
  26. IUPAC, Compendium of Chemical Terminology, 5th ed. (the "Gold Book") (2025). Online version: (2006–) "Chemical element".
    https://goldbook.iupac.org/terms/view/C01022.html
  27. iupac.org
    https://iupac.org/what-we-do/periodic-table-of-elements/
  28. Commission on Isotopic Abundances and Atomic Weights
    https://www.ciaaw.org/atomic-weights.htm
  29. Greenwood & Earnshaw, pp. 24–27
  30. Gray, p. 6
  31. Nature Chemistry
    https://www.nature.com/articles/s41557-018-0190-9
  32. Kinematics and Physics of Celestial Bodies
    https://ui.adsabs.harvard.edu/abs/2008KPCB...24...89G
  33. Nature's Building Blocks: An A-Z guide to the elements
  34. Physics of Atomic Nuclei
    https://doi.org/10.1134%2FS1063778818010167
  35. The Chemistry of the Actinide and Transactinide Elements
  36. Nature
    https://ui.adsabs.harvard.edu/abs/2003Natur.422..876D
  37. European Physical Journal A
    https://arxiv.org/abs/1908.11458
  38. At. Data Nucl. Data Tables
    https://ui.adsabs.harvard.edu/abs/2002ADNDT..80...83T
  39. Nature
    https://ui.adsabs.harvard.edu/abs/1971Natur.234..132H
  40. Physical Review C
    https://ui.adsabs.harvard.edu/abs/2012PhRvC..85a5801L
  41. Chinese Chemical Letters
    http://www.ccspublishing.org.cn/article/doi/10.1016/j.cclet.2022.03.036?pageType=en
  42. Nature Communications
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309418
  43. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005
    https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf
  44. Pure Appl. Chem.
    https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf
  45. Chemistry International
    https://iupac.org/wp-content/uploads/2021/04/ChemInt_Jan2021_PP.pdf
  46. J. Chem. Educ
    https://ui.adsabs.harvard.edu/abs/1982JChEd..59..634J
  47. Quantum Mechanics: Non-Relativistic Theory
  48. Foundations of Chemistry
    https://link.springer.com/article/10.1007/s10698-015-9216-1
  49. Journal of Chemical Education
    https://pubs.acs.org/doi/pdf/10.1021/ed086p1188
  50. Radiochimica Acta
    https://doi.org/10.1515%2Fract-2018-3082
  51. Petrucci et al., p. 331
  52. Naturwissenschaften
    https://link.springer.com/article/10.1007/BF02448807
  53. The Cartoon Guide to Chemistry
  54. Handbook on the Physics and Chemistry of Rare Earths
    https://doi.org/10.1016%2FB978-0-444-53590-0.00001-7
  55. Scerri, p. 375
  56. "The constitution of group 3 of the periodic table"
    https://iupac.org/projects/project-details/?project_nr=2015-039-2-200
  57. Scerri, p. 17
  58. Merriam-Webster.com Dictionary
    https://www.merriam-webster.com/dictionary/periodic%20law
  59. Journal of Chemical Education
    https://doi.org/10.1021%2Fed086p1186
  60. The Feynman Lectures on Physics
    https://feynmanlectures.caltech.edu/III_19.html
  61. Petrucci et al., p. 323
  62. Petrucci et al., p. 306
  63. Petrucci et al., p. 322
  64. Introductory Chemistry
    https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/
  65. chem.fsu.edu
    https://www.chem.fsu.edu/chemlab/chm1045/e_config.html
  66. Proc. Natl. Acad. Sci.
    https://www.pnas.org/content/51/4/664.full.pdf
  67. Modern Inorganic Chemistry
    https://archive.org/details/trent_0116300649799/page/10
  68. Foundations of Chemistry
    https://doi.org/10.1023%2FA%3A1011476405933
  69. Journal of Physics B: Atomic and Molecular Physics
    https://ui.adsabs.harvard.edu/abs/1981JPhB...14.4425O
  70. J. Chem. Educ.
    https://ui.adsabs.harvard.edu/abs/1979JChEd..56..714W
  71. Petrucci et al., p. 328
  72. Frontiers in Chemistry
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818537
  73. Angewandte Chemie International Edition
    https://doi.org/10.1002%2Fanie.197300121
  74. Spectra of the Rare Earths
  75. Handbook on the Physics and Chemistry of Rare Earths
  76. nist.gov
    https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on
  77. Inorganic Chemistry
    https://doi.org/10.1021%2Fic50177a056
  78. Chemical Structure and Reactivity
  79. Jensen, William B.
    https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf
  80. Doklady Physical Chemistry
    https://www.primefan.ru/stuff/chem/nefedov.pdf
  81. Wulfsberg, p. 27
  82. Petrucci et al., pp. 326–7
  83. Physica Status Solidi B
    https://ui.adsabs.harvard.edu/abs/1980PSSBR..97..631F
  84. Foundations of Chemistry
    https://link.springer.com/article/10.1007/s10698-015-9216-1
  85. American Journal of Physics
    https://ui.adsabs.harvard.edu/abs/1965AmJPh..33..637H
  86. Inorganic Chemistry
    https://doi.org/10.1021%2Fic102028d
  87. "Some Comments on the Position of Lawrencium in the Periodic Table"
    https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf
  88. Acta Chimica Sinica
  89. Physical Chemistry Chemical Physics
    https://ui.adsabs.harvard.edu/abs/2013PCCP...15.7839X
  90. Chem. Eur. J.
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6772027
  91. Physical Review B
    https://ui.adsabs.harvard.edu/abs/1994PhRvB..49.4954S
  92. Physical Chemistry Chemical Physics
    https://ui.adsabs.harvard.edu/abs/2021PCCP...24..321H
  93. Journal of Chemical Physics
    https://doi.org/10.1063%2F1.480168
  94. Inorganic Chemistry
    https://escholarship.org/uc/item/4tc1b0xz
  95. Physical Review Letters
    https://zenodo.org/record/1233903
  96. Phys. Chem. Chem. Phys
    http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g
  97. Scerri, p. 354–6
  98. Z
    https://doi.org/10.1103%2FPhysRevLett.104.142502
  99. JINR Communication
    https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf
  100. IUPAC
    https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/
  101. NIST
    https://www.nist.gov/pml/periodic-table-elements
  102. Structure and Bonding
    https://doi.org/10.1007%2FBFb0116496
  103. C&EN News
    https://cen.acs.org/physical-chemistry/periodic-table/periodic-table-icon-chemists-still/97/i1
  104. Gray, p. 12
  105. 107 Stories About Chemistry
  106. The Periodic Table: Past, Present, Future
  107. Organic Chemistry
  108. Chemical & Engineering News
    https://doi.org/10.1021%2Fcen-v023n023.p2190
  109. Chemistry International
    https://doi.org/10.1515%2Fci.2003.25.6.14
  110. Greenwood & Earnshaw, throughout the book
  111. Chemistry International
    http://publications.iupac.org/ci/2004/2603/ud2_scerri.html
  112. Shattered Symmetry: Group Theory from the Eightfold Way to the Periodic Table
  113. IUCrJ
    https://www.researchgate.net/publication/342152661
  114. Scerri, pp. 392−401
  115. Foundations of Chemistry
    https://doi.org/10.1007%2Fs10698-017-9302-7
  116. Chemical & Engineering News
    https://cen.acs.org/articles/97/i3/Reactions.html
  117. Nature Chemistry
    https://doi.org/10.1038%2Fnchem.1631
  118. Siekierski and Burgess, pp. 23–26
  119. Siekierski and Burgess, p. 128
  120. Modeling Marvels: Computational Anticipation of Novel Molecules
    https://books.google.com/books?id=IoFzgBSSCwEC
  121. Wulfsberg, p. 53: "As pointed out by W. B. Jensen, the metallurgical resemblance [to yttrium] is much stronger for lutet
  122. Progress of Theoretical Physics
    https://doi.org/10.1143%2FPTP.29.1
  123. Pure Appl. Chem
    https://doi.org/10.1351%2FPAC-REP-10-05-01
  124. Pure Appl. Chem
    https://doi.org/10.1515%2Fpac-2015-0502
  125. Pure and Applied Chemistry
    http://www.chem.helsinki.fi/~pyykko/pekka/No330b.pdf
  126. Nature Reviews Physics
    https://doi.org/10.1038%2Fs42254-023-00668-y
  127. Chemistry International
    https://publications.iupac.org/ci/2009/3101/1_leigh.html
  128. Nomenclature of inorganic chemistry: recommendations 1990
    https://archive.org/details/nomenclatureofin0000unse/page/282/mode/2up
  129. Foundations of Chemistry
    https://doi.org/10.1007%2Fs10698-020-09384-2
  130. Coordination Chemistry Reviews
    https://purehost.bath.ac.uk/ws/files/227604162/CCR_SC_Y_Ln_Manuscript_accepted_131221.pdf
  131. Journal of Chemical Education
    https://doi.org/10.1021%2Fed085p1482
  132. The Periodic Law
    https://www.rsc.org/images/23_The_Periodic_Law_tcm18-30005.pdf
  133. Festkörper Probleme: Plenary Lectures of the Divisions Semiconductor Physics, Surface Physics, Low Temperature Physics, High Polymers, Thermodynamics and Statistical Mechanics, of the German Physical Society, Münster, March 19–24, 1973
    https://doi.org/10.1007%2FBFb0108579
  134. Wulfsberg, p. 26
  135. Greenwood and Earnshaw, pp. 27–9
  136. The essence of materials for engineers
  137. The basics of chemistry
    https://archive.org/details/basicschemistry00myer_641
  138. Chemistry
    https://archive.org/details/riimchemistry00chan/page/289
  139. Haas, Arthur Erich (1884–1941) Uber die elektrodynamische Bedeutung des Planckschen Strahlungsgesetzes und uber eine neu
  140. Chemguide
    https://www.chemguide.co.uk/atoms/properties/atradius.html
  141. Pure and Applied Chemistry
    https://doi.org/10.1515%2Fpac-2019-0901
  142. Journal of Computational Chemistry
    https://doi.org/10.1002%2Fjcc.20522
  143. Scerri, pp. 407–420
  144. Greenwood and Earnshaw, p. 29
  145. Foundations of Chemistry
    https://doi.org/10.1007%2Fs10698-018-9321-z
  146. Journal of General Chemistry of the USSR
    https://archive.org/details/sim_russian-journal-of-general-chemistry_1968-02_38_2/page/212/mode/2up
  147. Chemistry: A European Journal
    https://ui.adsabs.harvard.edu/abs/2009ChEuJ..15..186P
  148. Accounts of Chemical Research
    https://ui.adsabs.harvard.edu/abs/1979AcChR..12..276P
  149. Journal of Chemical Education
    https://ui.adsabs.harvard.edu/abs/1991JChEd..68..110N
  150. Actinides Reviews
    https://kobra.uni-kassel.de/bitstream/handle/123456789/2008100124269/Fricke_theoretical_1971.pdf
  151. The Chemistry of Superheavy Elements
  152. Frontiers in Chemistry
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464923
  153. Wulfsberg, pp. 33–34
  154. Greenwood and Earnshaw, pp. 24–5
  155. Chemguide
    https://www.chemguide.co.uk/atoms/properties/ies.html
  156. Chemguide
    https://www.chemguide.co.uk/atoms/properties/eas.html
  157. Physical Chemistry Chemical Physics
    http://americanae.aecid.es/americanae/es/registros/registro.do?tipoRegistro=MTD&idBib=3332434
  158. Journal of Physics: Conference Series
    https://doi.org/10.1088%2F1742-6596%2F388%2F1%2F012006
  159. Wulfsberg, p. 28
  160. Wulfsberg, p. 274
  161. Greenwood and Earnshaw, p. 113
  162. Siekierski and Burgess, pp. 45–54
  163. Inorganic Chemistry
    https://doi.org/10.1021%2Fic00281a011
  164. Siekierski and Burgess, pp. 134–137
  165. Siekierski and Burgess, pp. 178–180
  166. Scerri, pp. 14–15
  167. Greenwood and Earnshaw, pp. 25–6
  168. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/1989JAChS.111.9003A
  169. The Chemistry of Organocopper Compounds
    https://books.google.com/books?id=263AXB0Q6tAC
  170. Applied Physics Letters
    https://pubs.aip.org/aip/apl/article/113/23/232104/36404/The-direct-bandgap-of-gray-tin-investigated-by
  171. "Intermolecular bonding – van der Waals forces"
    https://www.chemguide.co.uk/atoms/bonding/vdw.html
  172. Chemguide
    https://www.chemguide.co.uk/atoms/bonding/metallic.html
  173. Physica Scripta
    https://ui.adsabs.harvard.edu/abs/1988PhyS...38..623P
  174. Siekierski and Burgess, pp. 60–66
  175. Chemistry of the Non-Metals
  176. Phys. Rev. Lett.
    https://doi.org/10.1103%2FPhysRevLett.114.105305
  177. Journal of Chemical Education
    https://ui.adsabs.harvard.edu/abs/2001JChEd..78.1686H
  178. Angewandte Chemie
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790653
  179. The Chemistry of Arsenic, Antimony and Bismuth
  180. Descriptive Inorganic Chemistry
  181. Angewandte Chemie International Edition
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916354
  182. The Journal of Chemical Physics
    https://ui.adsabs.harvard.edu/abs/2022JChPh.157f4304F
  183. "Gas Phase Chemistry of Superheavy Elements"
    https://web.archive.org/web/20120220090755/https://lch.web.psi.ch/files/lectures/TexasA%26M/TexasA%26M.pdf
  184. phys.org
    https://phys.org/news/2022-09-flerovium-volatile-metal-periodic-table.html
  185. Frontiers in Chemistry
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453156
  186. Physical Review Letters
    https://ui.adsabs.harvard.edu/abs/2013PhRvL.111k6404H
  187. Chemistry World
    https://www.chemistryworld.com/news/metallic-properties-predicted-for-astatine/6582.article
  188. Chemguide
    https://www.chemguide.co.uk/atoms/structures/metals.html
  189. Lehrbuch der Anorganischen Chemie
  190. Inorganic chemistry
  191. The Elements, in Handbook of Chemistry and Physics
    https://archive.org/details/crchandbookofche81lide/page/4
  192. Handbook of the Physicochemical Properties of the Elements
    https://web.archive.org/web/20150402123344/https://ihtik.lib.ru/2011.08_ihtik_nauka-tehnika/2011.08_ihtik_nauka-tehnika_3560.rar
  193. Nature
    https://ui.adsabs.harvard.edu/abs/1995Natur.376..238H
  194. Physical Review B
    https://ui.adsabs.harvard.edu/abs/1972PhRvB...6.4370J
  195. Chemguide
    https://www.chemguide.co.uk/inorganic/period3/elementsphys.html
  196. Chemguide
    https://www.chemguide.co.uk/inorganic/group4/properties.html
  197. Physical Review Letters
    https://ui.adsabs.harvard.edu/abs/1993PhRvL..70.3764W
  198. www.acs.org
    https://www.acs.org/content/acs/en/education/whatischemistry/periodictable.html
  199. www.rsc.org
    https://www.rsc.org/periodic-table
  200. Encyclopædia Britannica
    https://www.britannica.com/EBchecked/topic/603220/transuranium-element
  201. Chemistry of the Non-Metallic Elements
  202. Journal of Chemical Education
    https://ui.adsabs.harvard.edu/abs/2001JChEd..78.1686H
  203. Comp. & Maths. With Appls
    https://doi.org/10.1016%2F0898-1221%2886%2990167-7
  204. Greenwood and Earnshaw, pp. 29–31
  205. Journal of Chemical Education
    https://ui.adsabs.harvard.edu/abs/1971JChEd..48..730F
  206. Journal of Chemical Education
    https://web.archive.org/web/20100611152417/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/091.%20Zn-Cd-Hg.pdf
  207. Principles of Chemical Nomenclature
    https://iupac.org/wp-content/uploads/2021/12/Principles_Leigh2011-compressed.pdf
  208. "WebElements"
    https://www.webelements.com/
  209. The Theory of Atomic Structure and Spectra
  210. Journal of Inorganic and Nuclear Chemistry
    https://doi.org/10.1016%2F0022-1902%2866%2980224-5
  211. Chemical Society Reviews
    https://doi.org/10.1039%2FCS9962500219
  212. Journal of Coordination Chemistry
    https://doi.org/10.1080%2F00958972.2022.2084394
  213. Essential Trends in Inorganic Chemistry
  214. Z
    https://web.archive.org/web/20231005134013/https://science.osti.gov/-/media/np/nsac/pdf/202310/October-4-LRP-Report.pdf
  215. arXiv
    https://arxiv.org/abs/1708.04064
  216. icc.dur.ac.uk
    https://icc.dur.ac.uk/~tt/Lectures/Galaxies/TeX/lec/node27.html
  217. Solid State Physics
  218. Pure and Applied Chemistry
    https://publications.iupac.org/pac/2002/pdf/7405x0793.pdf
  219. Pure and Applied Chemistry
    https://rua.ua.es/dspace/bitstream/10045/55935/1/2016_Koppenol_etal_PureApplChem.pdf
  220. Chemie in unserer Zeit
    https://www.chemistryviews.org/details/ezine/10907570/New_Kids_on_the_Table_Is_Element_118_a_Noble_Gas__Part_1.html
  221. www.chemistry.or.jp
    https://www.chemistry.or.jp/news/information/1-2.html
  222. Annalen der Physik
    https://babel.hathitrust.org/cgi/pt?id=chi.096071138;view=1up;seq=351
  223. Annalen der Physik und Chemie
    https://babel.hathitrust.org/cgi/pt?id=mdp.39015065410634;view=1up;seq=315
  224. Eureka!: Scientific Breakthroughs That Changed The World
    https://ui.adsabs.harvard.edu/abs/2001esbt.book.....H
  225. Scerri, p. 47
  226. The Ingredients: A Guided Tour of the Elements
  227. Encyclopædia Britannica
    https://en.wikisource.org/wiki/1911_Encyclop%C3%A6dia_Britannica/Newlands,_John_Alexander_Reina
  228. Meyer, Julius Lothar; Die modernen Theorien der Chemie (1864); table on page 137 Archived 2 January 2019 at the Wayback
    https://reader.digitale-sammlungen.de/de/fs1/object/goToPage/bsb10073411.html?pageNo=147
  229. Scerri, pp. 106–108
  230. Scerri, p. 113
  231. Scerri, pp. 117–123
  232. Journal of the Russian Chemical Society
    https://web.archive.org/web/20170813142644/https://www.knigafund.ru/books/56718/read#page31
  233. Scerri, p. 149
  234. Scerri, p. 151–2
  235. New Scientist
    https://www.newscientist.com/people/dmitri-mendeleev/
  236. Scerri, pp. 164–169
  237. The Hexagon
    https://web.archive.org/web/20190716215907/https://pdfs.semanticscholar.org/afe4/8822cd0871e65dc5401166e7df68dc0ecb7f.pdf
  238. A. van den Broek, Physikalische Zeitschrift, 14, (1913), 32–41
  239. Scerri, p. 185
  240. A. van den Broek, Die Radioelemente, das periodische System und die Konstitution der Atom, Physik. Zeitsch., 14, 32, (19
  241. E. Rutherford, Phil. Mag., 27, 488–499 (Mar. 1914). "This has led to an interesting suggestion by van Broek that the num
  242. The Periodic Kingdom
    https://archive.org/details/periodickingdomj00atki/page/87
  243. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
    https://doi.org/10.1002%2Fchem.202004775
  244. Foundations of Chemistry
    https://doi.org/10.1007%2Fs10698-021-09410-x
  245. A Tale of Seven Elements
  246. See Bohr table from 1913 paper below.
  247. Helge Kragh, Aarhus, Lars Vegard, Atomic Structure, and the Periodic System, Bull. Hist. Chem., VOLUME 37, Number 1 (201
  248. Scerri, pp. 208–218
  249. Niels Bohr, "On the Constitution of Atoms and Molecules, Part III, Systems containing several nuclei" Philosophical Maga
  250. Historical Studies in the Physical Sciences
    https://online.ucpress.edu/hsns/article/doi/10.2307/27757389/47571/Niels-Bohr-s-Second-Atomic-Theory
  251. W. Kossel, "Über Molekülbildung als Folge des Atom- baues", Ann. Phys., 1916, 49, 229–362 (237).
  252. Translated in Helge Kragh, Aarhus, Lars Vegard, Atomic Structure, and the Periodic System, Bull. Hist. Chem., VOLUME 37,
  253. Journal of the American Chemical Society
    https://pubs.acs.org/doi/abs/10.1021/ja02227a002
  254. Journal of the American Chemical Society
    https://pubs.acs.org/doi/abs/10.1021/ja01440a023
  255. Journal of Chemical Education
    https://www.uv.es/~borrasj/ingenieria_web/temas/tema_1/lecturas_comp/p952.pdf
  256. Nature
    https://doi.org/10.1038%2F111079a0
  257. Journal of Chemical Education
    https://web.archive.org/web/20200315031648/http://www.jce.divched.org/Journal/Issues/1982/Mar/jceSubscriber/JCE1982p0242.pdf
  258. Nature Chemistry
    https://www.nature.com/articles/s41557-018-0140-6
  259. Scerri, pp. 218–23
  260. Journal of Chemical Education
    https://web.archive.org/web/20181123140649/https://www.che.uc.edu/jensen/w.%20b.%20jensen/reprints/137.%20s,%20p,%20d,%20f.pdf
  261. Journal of the Franklin Institute
    https://ui.adsabs.harvard.edu/abs/1930FrInJ.210..609K
  262. Annals of the New York Academy of Sciences
    https://ui.adsabs.harvard.edu/abs/2003NYASA.988..182O
  263. Journal of Experimental and Theoretical Physics
    http://jetp.ras.ru/cgi-bin/e/index?t=&au=+Klechkovskii&yf=2022&yt=2022&se=1&a=s
  264. Journal of Experimental and Theoretical Physics
    http://jetp.ras.ru/cgi-bin/e/index/e/35/1/p66?a=list
  265. Scerri, pp. 313–321
  266. Scerri, pp. 322–340
  267. fas.org
    https://fas.org/sgp/othergov/doe/lanl/orgs/nmt/97summer.pdf
  268. Scerri, pp. 356–9
  269. Chemistry International
    https://doi.org/10.1515%2Fci-2016-0204
  270. Pure and Applied Chemistry
    https://old.iupac.org/reports/1991/6306wapstra/index.html
  271. Pure and Applied Chemistry
    https://doi.org/10.1351%2Fpac199769122471
  272. Chemistry International
    https://doi.org/10.1515%2Fci-2019-0103
  273. Chemistry International
    https://www.iupac.org/publications/ci/2012/3404/ud.html
  274. Scerri, pp. 356–363
  275. Chemistry World
    https://www.chemistryworld.com/what-it-takes-to-make-a-new-element/1017677.article
  276. "150 years of the periodic table: Test your knowledge"
    https://www.bbc.com/news/science-environment-47008289
  277. Pure and Applied Chemistry
    https://doi.org/10.1515%2Fpac-2020-2926
  278. Recent Impact of Physics on Inorganic Chemistry
    https://archive.org/details/recentimpactofph0000unse/page/89
  279. Recent Impact of Physics on Inorganic Chemistry
    https://web.archive.org/web/20160322072636/http://kobra.bibliothek.uni-kassel.de/bitstream/urn:nbn:de:hebis:34-2008071622807/1/Fricke_Dirac_1977.pdf
  280. "BBC Podcast: New Elements"
    https://nuclearscience.lbl.gov/2025/09/10/bbc-podcast-new-elements/
  281. Nature
    https://doi.org/10.1038%2Fd41586-019-00285-9
  282. Status and perspectives of the Dubna superheavy element factory
    https://www.epj-conferences.org/articles/epjconf/pdf/2016/26/epjconf-NS160-08001.pdf
  283. jinr.ru
    https://www.jinr.ru/posts/how-are-new-chemical-elements-born/
  284. Chemistry World
    https://www.chemistryworld.com/news/berkeley-lab-to-lead-us-hunt-for-element-120-after-breakdown-of-collaboration-with-russia/4018207.article
  285. lbl.gov
    https://physicalsciences.lbl.gov/2023/10/16/berkeley-lab-to-test-new-approach-to-making-superheavy-elements/
  286. The European Physical Journal A
    https://ui.adsabs.harvard.edu/abs/2022EPJA...58..158G
  287. Philosophical Transactions of the Royal Society A
    https://doi.org/10.1098%2Frsta.2019.0300
  288. Science News
    https://doi.org/10.2307%2F3963006
  289. Theoretica Chimica Acta
    https://doi.org/10.1007%2FBF01172015
  290. Physical Chemistry Chemical Physics
    https://ui.adsabs.harvard.edu/abs/2011PCCP...13..161P
  291. Phys. Rev. Lett
    https://arxiv.org/abs/1707.08710
  292. Antimony, Gold, and Jupiter's Wolf
  293. Physics Reports
    https://arxiv.org/abs/2301.02553
  294. Comptes Rendus Chimie
    https://comptes-rendus.academie-sciences.fr/chimie/article/CRCHIM_2020__23_3_255_0.pdf
  295. "Superheavy Element 114 Confirmed: A Stepping Stone to the Island of Stability"
    https://newscenter.lbl.gov/2009/09/24/114-confirmed/
  296. Journal of Physics: Conference Series
    https://doi.org/10.1088%2F1742-6596%2F337%2F1%2F012005
  297. Nuclear Physics A
    https://ui.adsabs.harvard.edu/abs/2015NuPhA.944..551S
  298. Journal of Physics: Conference Series
    https://inspirehep.net/record/1221632/files/jpconf13_413_012002.pdf
  299. Radiochimica Acta
    https://doi.org/10.1515%2Fract-2019-3104
  300. Scerri, p. 386
  301. European Physical Journal Web of Conferences
    https://www.epj-conferences.org/articles/epjconf/abs/2016/26/epjconf-NS160-03002/epjconf-NS160-03002.html
  302. Physical Review Letters
    https://arxiv.org/abs/1707.06610
  303. Physical Review D
    https://arxiv.org/abs/2001.03531
  304. Reviews of Modern Physics
    https://doi.org/10.1103%2FRevModPhys.91.011001
  305. International Journal of Modern Physics E
    https://www.researchgate.net/publication/263915732
  306. Journal of Physics
    https://nrv.jinr.ru/pdf_file/J_phys_2013.pdf
  307. Bloomberg Businessweek
    https://www.bloomberg.com/news/features/2019-08-28/making-new-elements-doesn-t-pay-just-ask-this-berkeley-scientist
  308. Scerri, p. 20
  309. Edward G. Mazurs Collection of Periodic Systems Images
    https://othmerlib.sciencehistory.org/record=b1069103~S6
  310. Nature Chemistry
    https://ericscerri.com/Michelle-Nat%20Chem.pdf
  311. Scerri, pp. 402–3
  312. "Happy sesquicentennial to the periodic table of the elements"
    https://blog.oup.com/2019/01/happy-sesquicentennial-periodic-table-elements/
  313. Scerri, p. 255
  314. 150 Years of the Periodic Table: Perspectives on the History of Chemistry
    https://doi.org/10.1007%2F978-3-030-67910-1_16
  315. Int J Quantum Chem
    https://ui.adsabs.harvard.edu/abs/2009IJQC..109..959S
  316. Foundations of Chemistry
    https://doi.org/10.1007%2Fs10698-005-2141-y
  317. Foundations of Chemistry
    https://philpapers.org/archive/SCEWIA.pdf
  318. ChemTexts
    https://doi.org/10.1007%2Fs40828-021-00157-8
Image
Source:
Tip: Wheel or +/− to zoom, drag to pan, Esc to close.