Topzle Topzle

Metal–organic framework

Updated: Wikipedia source

Metal–organic framework

Metal–organic frameworks (MOFs) are a class of porous polymers consisting of metal clusters, also known as secondary building units (SBUs), coordinated to organic ligands to form one-, two-, or three-dimensional structures. The organic ligands included are sometimes referred to as "struts" or "linkers", one example being 1,4-benzenedicarboxylic acid (H2bdc). MOFs are classified as reticular materials. More formally, a metal–organic framework is a potentially porous extended structure made from metal ions and organic linkers. An extended structure is a structure whose sub-units occur in a constant ratio and are arranged in a repeating pattern. MOFs are a subclass of coordination networks, which is a coordination compound extending, through repeating coordination entities, in one dimension, but with cross-links between two or more individual chains, loops, or spiro-links, or a coordination compound extending through repeating coordination entities in two or three dimensions. Coordination networks including MOFs further belong to coordination polymers, which is a coordination compound with repeating coordination entities extending in one, two, or three dimensions. Most of the MOFs reported in the literature are crystalline compounds, but there are also amorphous MOFs, and other disordered phases. In most cases for MOFs, the pores are stable during the elimination of the guest molecules (often solvents) and could be refilled with other compounds. Because of this property, MOFs are of interest for the storage of gases such as hydrogen and carbon dioxide. Other possible applications of MOFs are in gas purification, in gas separation, in water remediation, in catalysis, as conducting solids and as supercapacitors. The synthesis and properties of MOFs constitute the primary focus of reticular chemistry (from Latin reticulum, "small net"). In contrast to MOFs, covalent organic frameworks (COFs) are made entirely from light elements (H, B, C, N, and O) with extended structures. Susumu Kitagawa, Richard Robson and Omar Yaghi were awarded the Nobel Prize in Chemistry in 2025 for their work on MOFs.

Tables

Classification of hybrid materials based on dimensionality[18] · Structure
0
0
Col 1
0
Col 2
1
Dimensionality of inorganic
2
Dimensionality of inorganic
3
Dimensionalityof organic
Dimensionalityof organic
Col 1
Dimensionalityof organic
Col 2
0
Dimensionality of inorganic
Molecular complexes
Dimensionality of inorganic
Hybrid inorganic chains
Dimensionality of inorganic
Hybrid inorganic layers
Dimensionality of inorganic
3D inorganic hybrids
1
1
Col 1
1
Col 2
Chain coordination polymers
Dimensionality of inorganic
Mixed inorganic-organic layers
Dimensionality of inorganic
Mixed inorganic-organic 3D framework
2
2
Col 1
2
Col 2
Layered coordination polymer
Dimensionality of inorganic
Mixed inorganic-organic 3D framework
3
3
Col 1
3
Col 2
3D Coordination polymers
Dimensionality of inorganic
0
1
2
3
Dimensionalityof organic
0
Molecular complexes
Hybrid inorganic chains
Hybrid inorganic layers
3D inorganic hybrids
1
Chain coordination polymers
Mixed inorganic-organic layers
Mixed inorganic-organic 3D framework
2
Layered coordination polymer
Mixed inorganic-organic 3D framework
3
3D Coordination polymers
MOFs that are considered to have the best properties for hydrogen storage as of May 2012 · Applications › Hydrogen storage › Design principles
MOF-210
MOF-210
Name
MOF-210
Formula
Zn4O(BTE)(BPDC), where BTE3−=4,4′,4″-[benzene-1,3,5-triyl-tris(ethyne-2,1-diyl)]tribenzoate and BPDC2−=biphenyl-4,4′-dicarboxylate
Hydrogen storage capacity
At 77 K: 8.6 excess wt% (17.6 total wt%) at 77 K and 80 bar. 44 total g H2/L at 80 bar and 77 K.At 298 K: 2.90 delivery wt% (1–100 bar) at 298 K and 100 bar.
MOF-200
MOF-200
Name
MOF-200
Formula
Zn4O(BBC)2, where BBC3−=4,4′,4″-[benzene-1,3,5-triyl-tris(benzene-4,1-diyl)]tribenzoate
Hydrogen storage capacity
At 77 K: 7.4 excess wt% (16.3 total wt%) at 77 K and 80 bar. 36 total g H2/L at 80 bar and 77 K.At 298 K: 3.24 delivery wt% (1–100 bar) at 298 K and 100 bar.
MOF-177
MOF-177
Name
MOF-177
Formula
Zn4O(BTB)2, where BTB3−=1,3,5-benzenetribenzoate
Structure
Tetrahedral [Zn4O]6+ units are linked by large, triangular tricarboxylate ligands. Six diamond-shaped channels (upper) with diameter of 10.8 Å surround a pore containing eclipsed BTB3− moieties (lower).
Hydrogen storage capacity
7.1 wt% at 77 K and 40 bar; 11.4 wt% at 78 bar and 77 K.
Comments
MOF-177 has larger pores, so hydrogen is compressed within holes rather than adsorbed to the surface. This leads to higher total gravimetric uptake but lower volumetric storage density compared to MOF-5.
MOF-5
MOF-5
Name
MOF-5
Formula
Zn4O(BDC)3, where BDC2−=1,4-benzenedicarboxylate
Structure
Square openings are either 13.8 or 9.2 Å depending on the orientation of the aromatic rings.
Hydrogen storage capacity
7.1 wt% at 77 K and 40 bar; 10 wt% at 100 bar; volumetric storage density of 66 g/L.
Comments
MOF-5 has received much attention from theorists because of the partial charges on the MOF surface, which provide a means of strengthening the binding hydrogen through dipole-induced intermolecular interactions; however, MOF-5 has poor performance at room temperature (9.1 g/L at 100 bar).
Name
Formula
Structure
Hydrogen storage capacity
Comments
MOF-210
Zn4O(BTE)(BPDC), where BTE3−=4,4′,4″-[benzene-1,3,5-triyl-tris(ethyne-2,1-diyl)]tribenzoate and BPDC2−=biphenyl-4,4′-dicarboxylate
excess wt% (17.6 total wt%) at 77 K and 80 bar. 44 total g H2/L at 80 bar and 77 K.At 298 K: 2.90 delivery wt% (1–100 bar) at 298 K and 100 bar.
MOF-200
Zn4O(BBC)2, where BBC3−=4,4′,4″-[benzene-1,3,5-triyl-tris(benzene-4,1-diyl)]tribenzoate
excess wt% (16.3 total wt%) at 77 K and 80 bar. 36 total g H2/L at 80 bar and 77 K.At 298 K: 3.24 delivery wt% (1–100 bar) at 298 K and 100 bar.
MOF-177
Zn4O(BTB)2, where BTB3−=1,3,5-benzenetribenzoate
Tetrahedral [Zn4O]6+ units are linked by large, triangular tricarboxylate ligands. Six diamond-shaped channels (upper) with diameter of 10.8 Å surround a pore containing eclipsed BTB3− moieties (lower).
K and 40 bar; 11.4 wt% at 78 bar and 77 K.
MOF-177 has larger pores, so hydrogen is compressed within holes rather than adsorbed to the surface. This leads to higher total gravimetric uptake but lower volumetric storage density compared to MOF-5.
MOF-5
Zn4O(BDC)3, where BDC2−=1,4-benzenedicarboxylate
Square openings are either 13.8 or 9.2 Å depending on the orientation of the aromatic rings.
K and 40 bar; 10 wt% at 100 bar; volumetric storage density of 66 g/L.
MOF-5 has received much attention from theorists because of the partial charges on the MOF surface, which provide a means of strengthening the binding hydrogen through dipole-induced intermolecular interactions; however, MOF-5 has poor performance at room temperature (9.1 g/L at 100 bar).
Mn3[(Mn4Cl)3(BTT)8]2, where H3BTT=benzene-1,3,5-tris(1H-tetrazole)
Consists of truncated octahedral cages that share square faces, leading to pores of about 10 Å in diameter. Contains open Mn2+ coordination sites.
60 g/L at 77 K and 90 bar; 12.1 g/L at 90 bar and 298 K.
This MOF is the first demonstration of open metal coordination sites increasing strength of hydrogen adsorption, which results in improved performance at 298 K. It has relatively strong metal-hydrogen interactions, attributed to a spin state change upon binding or to a classical Coulombic attraction.
Cu3(BTC)2(H2O)3, where H3BTC=1,3,5-benzenetricarboxylic acid
Consists of octahedral cages that share paddlewheel units to define pores of about 9.8 Å in diameter.
High hydrogen uptake is attributed to overlapping attractive potentials from multiple copper paddle-wheel units: each Cu(II) center can potentially lose a terminal solvent ligand bound in the axial position, providing an open coordination site for hydrogen binding.
· Applications › Hydrogen storage › Other methods of hydrogen storage
High-pressure gas cylinders
High-pressure gas cylinders
Storage method
High-pressure gas cylinders
ρm (mass%)
13
ρv (kg H2/m3)
<40
T (°C)
25
P (bar)
800
Remarks
Compressed H2 gas in lightweight composite cylinder
Liquid hydrogen in cryogenic tanks
Liquid hydrogen in cryogenic tanks
Storage method
Liquid hydrogen in cryogenic tanks
ρm (mass%)
size-dependent
ρv (kg H2/m3)
70.8
T (°C)
−252
P (bar)
1
Remarks
Liquid H2; continuous loss of a few percent of H2 per day at 25 °C
Adsorbed hydrogen
Adsorbed hydrogen
Storage method
Adsorbed hydrogen
ρm (mass%)
~2
ρv (kg H2/m3)
20
T (°C)
−80
P (bar)
100
Remarks
Physisorption of H2 on materials
Adsorbed on interstitial sites in a host metal
Adsorbed on interstitial sites in a host metal
Storage method
Adsorbed on interstitial sites in a host metal
ρm (mass%)
~2
ρv (kg H2/m3)
150
T (°C)
25
P (bar)
1
Remarks
Atomic hydrogen reversibly adsorbs in host metals
Complex compounds
Complex compounds
Storage method
Complex compounds
ρm (mass%)
<18
ρv (kg H2/m3)
150
T (°C)
>100
P (bar)
1
Remarks
Complex compounds ([AlH4]− or [BH4]−); desorption at elevated temperature, adsorption at high pressures
Metal and complexes together with water
Metal and complexes together with water
Storage method
Metal and complexes together with water
ρm (mass%)
<40
ρv (kg H2/m3)
>150
T (°C)
25
P (bar)
1
Remarks
Chemical oxidation of metals with water and liberation of H2
Storage method
ρm (mass%)
ρv (kg H2/m3)
T (°C)
P (bar)
Remarks
High-pressure gas cylinders
13
<40
25
800
Compressed H2 gas in lightweight composite cylinder
Liquid hydrogen in cryogenic tanks
size-dependent
70.8
−252
1
Liquid H2; continuous loss of a few percent of H2 per day at 25 °C
Adsorbed hydrogen
~2
20
−80
100
Physisorption of H2 on materials
Adsorbed on interstitial sites in a host metal
~2
150
25
1
Atomic hydrogen reversibly adsorbs in host metals
Complex compounds
<18
150
>100
1
Complex compounds ([AlH4]− or [BH4]−); desorption at elevated temperature, adsorption at high pressures
Metal and complexes together with water
<40
>150
25
1
Chemical oxidation of metals with water and liberation of H2

References

  1. Chemical Engineering Journal
    https://doi.org/10.1016%2Fj.cej.2024.152377
  2. Angewandte Chemie International Edition
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300199
  3. Cell Reports Physical Science
    https://doi.org/10.1016%2Fj.xcrp.2022.100757
  4. Pure and Applied Chemistry
    https://publications.iupac.org/pac/pdf/2013/pdf/8508x1715.pdf
  5. Accounts of Chemical Research
    https://doi.org/10.1021%2Far5000314
  6. Nature Materials
    https://doi.org/10.1038%2Fs41563-021-00957-w
  7. Journal of Materials Chemistry A
    https://doi.org/10.1039%2Fc8ta00264a
  8. Metal-Organic Frameworks Applications from Catalysis to Gas Storage
  9. Journal of Solid State Chemistry
    http://yaghi.berkeley.edu/pdfPublications/RCpresent.pdf
  10. Science
    https://ui.adsabs.harvard.edu/abs/2005Sci...310.1166C
  11. The Nobel Prize
    https://www.nobelprize.org/prizes/chemistry/2025/press-release/
  12. Nature
    https://www.nature.com/articles/378703a0
  13. Journal of the American Chemical Society
    https://pubs.acs.org/doi/10.1021/ja981669x
  14. Nature
    https://ui.adsabs.harvard.edu/abs/1999Natur.402..276L
  15. Nature
    https://www.nature.com/articles/46248
  16. www.britannica.com
    https://www.britannica.com/biography/Omar-M-Yaghi
  17. Chemical Society Reviews
    https://doi.org/10.1039%2Fb804680h
  18. Chemical Communications
    https://doi.org/10.1039%2Fb610264f
  19. Dalton Transactions
    https://xlink.rsc.org/?DOI=D0DT02802A
  20. Nature
    https://www.nature.com/articles/nature08326
  21. Angewandte Chemie
    https://doi.org/10.1002%2F%28SICI%291521-3773%2819991115%2938%3A22%3C3268%3A%3AAID-ANIE3268%3E3.0.CO%3B2-U
  22. European Journal of Inorganic Chemistry
    https://doi.org/10.1002%2Fejic.200700442
  23. Accounts of Chemical Research
    https://doi.org/10.1021%2Far700025k
  24. Angewandte Chemie
    https://ui.adsabs.harvard.edu/abs/2008ACIE...47.6766D
  25. Handbook of Porous Materials
    https://doi.org/10.1142%2F11909
  26. Journal of the American Chemical Society
    https://doi.org/10.1021%2Fja0635231
  27. Microporous and Mesoporous Materials
    https://ui.adsabs.harvard.edu/abs/2008MicMM.116..727C
  28. New Journal of Chemistry
    https://doi.org/10.1039%2FD0NJ00257G
  29. CrystEngComm
    https://ui.adsabs.harvard.edu/abs/2008CEG....10.1839P
  30. CrystEngComm
    https://ui.adsabs.harvard.edu/abs/2007CEG.....9..879B
  31. RSC Advances
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054116
  32. Nature Materials
    https://lirias.kuleuven.be/handle/123456789/551545
  33. Chemistry of Materials
    https://bib-pubdb1.desy.de/search?p=id:%22PUBDB-2019-03805%22
  34. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2018JAChS.140.4812V
  35. Chemie in unserer Zeit
    https://doi.org/10.1002%2Fciuz.200700404
  36. Chemical Communications
    https://pubs.rsc.org/en/content/articlelanding/2012/CC/c2cc34493a
  37. ACS Sustainable Chemistry & Engineering
    https://ui.adsabs.harvard.edu/abs/2020ASCE....8.9680R
  38. Microporous and Mesoporous Materials
    https://ui.adsabs.harvard.edu/abs/2009MicMM.117..111B
  39. Reviews in Mineralogy and Geochemistry
    https://ui.adsabs.harvard.edu/abs/2009RvMG...70...87P
  40. Nature Materials
    https://www.nature.com/articles/nmat3359
  41. Science Advances
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368424
  42. Journal of the American Chemical Society
    https://www.escholarship.org/uc/item/55g1h87k
  43. Journal of the American Chemical Society
    https://doi.org/10.1021%2Fja808995d
  44. Angewandte Chemie
    https://ui.adsabs.harvard.edu/abs/2008ACIE...47.8482B
  45. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2013JAChS.13511688L
  46. Chemical Communications
    https://doi.org/10.1039%2Fc4cc09407g
  47. Faraday Discussions
    https://ui.adsabs.harvard.edu/abs/2017FaDi..201..163L
  48. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2016JAChS.13812045L
  49. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2015JAChS.137.3177Y
  50. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2016JAChS.138.8912Y
  51. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2017JAChS.13916852D
  52. Journal of the American Chemical Society
    https://pubs.acs.org/doi/10.1021/ja505589d
  53. Chemical Society Reviews
    https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.549.4404
  54. Journal of Physical Chemistry C
    https://doi.org/10.1021%2Fjp072867q
  55. Chemical & Engineering News
    https://cen.acs.org/articles/91/i51/Materials-Chemistry-Metal-Organic-Frameworks.html
  56. Zeolites and Catalysis: Synthesis, Reactions and Applications
    https://books.google.com/books?id=zMOghsHzg1YC
  57. ACS Omega
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643801
  58. Catalysts
    https://doi.org/10.3390%2Fcatal11040448
  59. Separation and Purification Technology
    https://doi.org/10.1016%2Fj.seppur.2020.117660
  60. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/1994JAChS.116.1151F
  61. Journal of Catalysis
    https://doi.org/10.1016%2Fj.jcat.2007.06.004
  62. New Journal of Chemistry
    https://doi.org/10.1039%2FB803953B
  63. Science
    https://ui.adsabs.harvard.edu/abs/1999Sci...283.1148C
  64. Chemistry: A European Journal
    https://biblio.ugent.be/publication/351275
  65. Chemical Communications
    https://doi.org/10.1039%2FB718371B
  66. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2008JAChS.130.5854H
  67. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2010JAChS.132.9138C
  68. Inorganica Chimica Acta
    https://doi.org/10.1016%2Fj.ica.2008.07.011
  69. Tetrahedron Letters
    https://doi.org/10.1016%2FS0040-4039%2800%2987457-2
  70. Chemical Communications
    https://doi.org/10.1039%2FB718443C
  71. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2007JAChS.129.2607H
  72. Angewandte Chemie
    https://ui.adsabs.harvard.edu/abs/2008ACIE...47.4144H
  73. Nature
    https://ui.adsabs.harvard.edu/abs/2000Natur.404..982S
  74. Chemical Communications
    https://doi.org/10.1039%2FB406114B
  75. Microporous and Mesoporous Materials
    https://doi.org/10.1016%2Fj.micromeso.2003.12.027
  76. Science
    https://ui.adsabs.harvard.edu/abs/1999Sci...283.1148C
  77. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2001JAChS.12310395E
  78. trans
    https://doi.org/10.1016%2Fj.jcat.2004.11.032
  79. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2007JAChS.12915094H
  80. Science
    https://hal.archives-ouvertes.fr/hal-03182295/file/ferey2005ter.pdf
  81. Catalysis Science & Technology
    https://doi.org/10.1039%2FC8CY00794B
  82. Dalton Transactions
    https://doi.org/10.1039%2FC9DT00368A
  83. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2008JAChS.130.6119S
  84. Nature Communications
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6194069
  85. Angewandte Chemie
    https://doi.org/10.1002%2Fanie.200390156
  86. Angewandte Chemie
    https://ui.adsabs.harvard.edu/abs/2006ACIE...45.4112U
  87. Angewandte Chemie
    https://ui.adsabs.harvard.edu/abs/2007ACIE...46.4987U
  88. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/1999JAChS.121.3279E
  89. Angewandte Chemie
    https://ui.adsabs.harvard.edu/abs/2007ACIE...46.8475W
  90. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2000JAChS.122.5158K
  91. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2004JAChS.126.6106B
  92. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2007JAChS.129.4880L
  93. Angewandte Chemie
    https://doi.org/10.1002%2Fanie.200353415
  94. Journal of the American Chemical Society
    https://doi.org/10.1021%2Fja052431t
  95. Angewandte Chemie
    https://doi.org/10.1002%2Fanie.200602099
  96. Chemical Communications
    https://doi.org/10.1039%2Fb600408c
  97. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2003JAChS.12511490H
  98. Angewandte Chemie
    https://ui.adsabs.harvard.edu/abs/2009ACIE...48.7502F
  99. Journal of the American Chemical Society
    https://doi.org/10.1021%2Fja0104352
  100. Journal of the American Chemical Society
    https://doi.org/10.1021%2Fja803783c
  101. Chemical Communications
    https://doi.org/10.1039%2FB512169H
  102. Journal of the American Chemical Society
    https://doi.org/10.1021%2Fja042802q
  103. Journal of Catalysis
    https://doi.org/10.1016%2FS0021-9517%2802%2900105-7
  104. The Journal of Physical Chemistry B
    https://doi.org/10.1021%2Fjp072085x
  105. Chemical Reviews
    https://doi.org/10.1021%2Fcr050193e
  106. Inorganic Chemistry
    https://doi.org/10.1021%2Fic060943i
  107. The Journal of Chemical Physics
    https://ui.adsabs.harvard.edu/abs/2005JChPh.123l4713F
  108. ChemSusChem
    https://ui.adsabs.harvard.edu/abs/2008ChSCh...1..981G
  109. Science Advances
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439611
  110. Faraday Discussions
    https://doi.org/10.1039%2Fc7fd00090a
  111. Chemical Science
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7066669
  112. The Journal of Physical Chemistry C
    https://doi.org/10.1021%2Facs.jpcc.4c10584
  113. Proceedings of the National Academy of Sciences
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2890448
  114. Angewandte Chemie International Edition
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9401003
  115. Angewandte Chemie International Edition
    https://www.pure.ed.ac.uk/ws/files/9295787/The_Effect_of_Pressure_on_ZIF_8_Increasing_Pore_Size_with_Pressure_and_the_Formation_of_a_High_Pressure_Phase_at_1.47_GPa.pdf
  116. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2009JAChS.13117546C
  117. The Journal of Physical Chemistry Letters
    https://hal.archives-ouvertes.fr/hal-02116930/file/postprint.pdf
  118. Journal of the American Chemical Society
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007208
  119. Microporous and Mesoporous Materials
    https://doi.org/10.1016%2Fj.micromeso.2013.02.025
  120. ACS Applied Materials & Interfaces
    https://pure.uva.nl/ws/files/34245472/acsami.pdf
  121. European Journal of Inorganic Chemistry
    https://ui.adsabs.harvard.edu/abs/2016EJIC.2016.4517D
  122. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2008JAChS.13010524C
  123. Nature
    https://ui.adsabs.harvard.edu/abs/1999Natur.402..276L
  124. Physical Review Letters
    https://ui.adsabs.harvard.edu/abs/2006PhRvL..96g9701A
  125. Physical Review B
    https://ui.adsabs.harvard.edu/abs/2010PhRvB..81q4103H
  126. The Journal of Chemical Physics
    https://hal.archives-ouvertes.fr/hal-02116910/file/Wine-rack%20frameworks.pdf
  127. CrystEngComm
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338503
  128. Coordination Chemistry Reviews
    https://doi.org/10.1016%2Fj.ccr.2019.213050
  129. The Journal of Physical Chemistry Letters
    https://ui.adsabs.harvard.edu/abs/2013JPCL....4..925W
  130. Physical Chemistry Chemical Physics
    https://arxiv.org/abs/1510.08220
  131. The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs
    https://digital.library.unt.edu/ark:/67531/metadc892410/
  132. Energie, pollution de l'air et developpement durable
    http://books.openedition.org/pucl/607
  133. Journal of the American Chemical Society
    https://doi.org/10.1021%2Fjacs.6b08803
  134. Energy.gov
    https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles
  135. Dalton Transactions
    https://doi.org/10.1039%2FB815583F
  136. Angewandte Chemie
    https://ui.adsabs.harvard.edu/abs/2010ACIE...49.5357Y
  137. Tetrahedron Letters
    https://doi.org/10.1016%2Fj.tetlet.2016.09.085
  138. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2009JAChS.13115120S
  139. Science
    https://doi.org/10.1126%2Fscience.1192160
  140. Journal of the American Chemical Society
    https://doi.org/10.1021%2Fja049408c
  141. Science
    https://ui.adsabs.harvard.edu/abs/2003Sci...300.1127R
  142. Journal of the American Chemical Society
    https://doi.org/10.1021%2Fja0656853
  143. Journal of Solid State Chemistry
    https://ui.adsabs.harvard.edu/abs/2005JSSCh.178.2527L
  144. Angewandte Chemie
    https://doi.org/10.1002%2Fanie.200462786
  145. Journal of the American Chemical Society
    https://doi.org/10.1021%2Fja056639q
  146. Chemical Physics Letters
    https://ui.adsabs.harvard.edu/abs/2008CPL...456...68G
  147. Metal Dihydrogen and s-Bond Complexes: Structure, Theory, and Reactivity
  148. Physical Chemistry Chemical Physics
    https://ui.adsabs.harvard.edu/abs/2012PCCP...14.7240B
  149. Chemistry: A European Journal
    https://ui.adsabs.harvard.edu/abs/2012ChEuJ..1812260B
  150. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2023JAChS.14520492S
  151. The Journal of Chemical Physics
    https://ui.adsabs.harvard.edu/abs/2012JChPh.136c4705S
  152. n
    https://doi.org/10.1016%2Fj.theochem.2005.02.017
  153. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2009JAChS.131.1404T
  154. Journal of the American Chemical Society
    https://doi.org/10.1021%2Fja809954r
  155. International Journal of Heat and Mass Transfer
    https://ui.adsabs.harvard.edu/abs/2007IJHMT..50..405H
  156. Physical Chemistry: A Molecular Approach
  157. Journal of the American Chemical Society
    https://doi.org/10.1021%2Fja0737164
  158. Journal of Physical Chemistry C
    https://doi.org/10.1021%2Fjp901988e
  159. Energy & Environmental Science
    https://ui.adsabs.harvard.edu/abs/2008EnEnS...1..222Z
  160. Journal of Materials Chemistry
    https://doi.org/10.1039%2Fb703608f
  161. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density
    https://doi.org/10.1007%2F978-1-4020-2303-3
  162. Die Naturwissenschaften
    http://infoscience.epfl.ch/record/206072
  163. Materials Today Chemistry
    https://doi.org/10.1016%2Fj.mtchem.2018.12.002
  164. Advanced Science
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5396165
  165. Nature Energy
    https://ui.adsabs.harvard.edu/abs/2019NatEn...4..115C
  166. Advanced Materials Interfaces
    https://doi.org/10.1002%2Fadmi.201800849
  167. ACS Catalysis
    https://doi.org/10.1021%2Facscatal.9b03790
  168. ACS Energy Letters
    https://doi.org/10.1021%2Facsenergylett.1c01350
  169. Chemical Reviews
    https://infoscience.epfl.ch/handle/20.500.14299/50895
  170. Chemical Society Reviews
    http://orca.cf.ac.uk/69289/1/69289.pdf
  171. Journal of the American Chemical Society
    https://doi.org/10.1021%2Fja045123o
  172. J. Mater. Chem. C
    https://doi.org/10.1039%2Fc4tc00414k
  173. Dalton Transactions
    https://doi.org/10.1039%2Fc6dt02213h
  174. RSC Advances
    https://ui.adsabs.harvard.edu/abs/2016RSCAd...611570L
  175. Chemistry of Materials
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3423226
  176. Accounts of Chemical Research
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777245
  177. Journal of the American Chemical Society
    https://doi.org/10.1021%2Fjacs.7b04532
  178. Proceedings of the National Academy of Sciences of the United States of America
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808657
  179. Dalton Transactions
    https://doi.org/10.1039%2FC5DT04183J
  180. Chemical Science
    https://doi.org/10.1039%2Fc3sc50230a
  181. Dalton Transactions
    https://doi.org/10.1039%2FC5DT02337H
  182. Environmental Science & Technology
    https://ui.adsabs.harvard.edu/abs/2017EnST...51.3911L
  183. Journal of Materials Chemistry A
    https://doi.org/10.1039%2FC5TA01972A
  184. ACS Central Science
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850516
  185. Chemical Society Reviews
    https://doi.org/10.1039%2FC5CS00330J
  186. Nature Communications
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589857
  187. Chemical Reviews
    https://doi.org/10.1021%2Facs.chemrev.7b00355
  188. Advanced Materials
    https://ui.adsabs.harvard.edu/abs/2017AdM....2906134W
  189. Angewandte Chemie
    https://ui.adsabs.harvard.edu/abs/2010ACIE...49.8630S
  190. Drug Discovery Today
    https://doi.org/10.1016%2Fj.drudis.2015.11.017
  191. Molecular Pharmaceutics
    https://doi.org/10.1021%2Facs.molpharmaceut.7b00168
  192. Journal of Inorganic Biochemistry
    https://doi.org/10.1016%2Fj.jinorgbio.2019.110818
  193. ACS Omega
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5879486
  194. Microporous and Mesoporous Materials
    https://ui.adsabs.harvard.edu/abs/2020MicMM.30210199N
  195. ACS Applied Materials & Interfaces
    https://ui.adsabs.harvard.edu/abs/2018AAMI...10.2328C
  196. Science
    https://doi.org/10.1126%2Fscience.1246738
  197. www.gizmag.com
    http://www.gizmag.com/2d-self-assembling-semiconductor-graphene/31879
  198. Journal of the American Chemical Society
    http://nrs.harvard.edu/urn-3:HUL.InstRepos:23597721
  199. Nature Materials
    https://www.nature.com/articles/s41563-018-0189-z
  200. Advanced Materials
    https://ui.adsabs.harvard.edu/abs/2020AdM....3207063A
  201. "Charge transport in two-dimensional materials and their electronic applications (Doctoral dissertation)"
    https://himani-arora-ha.github.io/pdf/Dissertation.pdf
  202. Angewandte Chemie
    https://ui.adsabs.harvard.edu/abs/2021AngCh.133.5672L
  203. ACS Central Science
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936098
  204. CrystEngComm
    https://doi.org/10.1039%2FC8CE01264D
  205. Nature Communications
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468859
  206. Advanced Materials
    https://ui.adsabs.harvard.edu/abs/2016AdM....28.7910L
  207. MOF Technologies
    https://web.archive.org/web/20210227181026/https://www.moftechnologies.com/mofs-for-co2
  208. ChemSusChem
    https://ui.adsabs.harvard.edu/abs/2009ChSCh...2..796C
  209. Chemical Reviews
    https://doi.org/10.1021%2Fcr2003272
  210. Energy Procedia
    https://doi.org/10.1016%2Fj.egypro.2011.01.089
  211. Introduction to Carbon Capture and Sequestration
  212. doi
    https://doi.org/10.2172%2F1003992
  213. ZME Science
    https://www.zmescience.com/science/new-method-use-carbon-in-smoke-83637354/
  214. ChemRxiv
    https://doi.org/10.26434%2Fchemrxiv.10332431
  215. Small Methods
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020345
  216. Desalination
    https://ui.adsabs.harvard.edu/abs/2020Desal.49514633E
  217. "Researchers discover efficient and sustainable way to filter salt and metal ions from water"
    https://phys.org/news/2018-02-efficient-sustainable-filter-salt-metal.html
  218. www.chemtube3d.com
    http://www.chemtube3d.com/solidstate/MOF-ZIF8.htm
  219. www.chemtube3d.com
    http://www.chemtube3d.com/solidstate/MOF-UiO66.html
  220. Science Advances
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5817922
  221. doi
    https://doi.org/10.1038%2Fs41893-020-0590-x
  222. Nature Communications
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909987
  223. Physical Chemistry Chemical Physics
    https://ui.adsabs.harvard.edu/abs/2020PCCP...2223073P
  224. Science
    https://ui.adsabs.harvard.edu/abs/2016Sci...353..137C
  225. Advanced Materials
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469265
  226. National Public Radio
    https://www.npr.org/sections/thetwo-way/2017/04/14/523796745/researchers-find-a-new-way-to-make-water-from-thin-air
  227. New Atlas
    https://newatlas.com/materials/sponge-aerogel-vapor-drinkable-water/
  228. Science Advances
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567601
  229. Scientific Reports
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191459
  230. The Future of Cooling
    https://www.iea.org/topics/energyefficiency/buildings/cooling/
  231. Applied Energy
    http://scholarbank.nus.edu.sg/handle/10635/68107
  232. Advanced Materials
    https://ui.adsabs.harvard.edu/abs/2011AdM....23.1268Z
  233. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/2009JAChS.131.2776H
  234. Journal of Materials Chemistry
    https://doi.org/10.1039%2FC2JM15615F
  235. Chemical Engineering Journal
    https://linkinghub.elsevier.com/retrieve/pii/S1385894722030777
  236. Journal of Materials Chemistry C
    https://doi.org/10.1039%2FC8TC02421A
  237. Chemical Reviews
    https://doi.org/10.1021%2Fcr200174w
  238. Lipeng Xin, Zhiying Zhang, Michael A. Carpenter, Ming Zhang, Feng Jin, Qingming Zhang, Xiaoming Wang, Weihua Tang, and X
    https://publons.com/author/1186390/lipeng-xin
  239. Chemistry of Materials
    https://doi.org/10.1021%2Facs.chemmater.3c01706
Image
Source:
Tip: Wheel or +/− to zoom, drag to pan, Esc to close.