Topzle Topzle

List of trigonometric identities

Updated: Wikipedia source

List of trigonometric identities

In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles. They are distinct from triangle identities, which are identities potentially involving angles but also involving side lengths or other lengths of a triangle. These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.

Tables

Each trigonometric function in terms of each of the other five.[1] · Pythagorean identities
sin ⁡ θ = {\displaystyle \sin \theta =}
sin ⁡ θ = {\displaystyle \sin \theta =}
in terms of
sin ⁡ θ = {\displaystyle \sin \theta =}
sin ⁡ θ {\displaystyle \sin \theta }
sin ⁡ θ {\displaystyle \sin \theta }
csc ⁡ θ {\displaystyle \csc \theta }
1 csc ⁡ θ {\displaystyle {\frac {1}{\csc \theta }}}
cos ⁡ θ {\displaystyle \cos \theta }
± 1 − cos 2 ⁡ θ {\displaystyle \pm {\sqrt {1-\cos ^{2}\theta }}}
sec ⁡ θ {\displaystyle \sec \theta }
± sec 2 ⁡ θ − 1 sec ⁡ θ {\displaystyle \pm {\frac {\sqrt {\sec ^{2}\theta -1}}{\sec \theta }}}
tan ⁡ θ {\displaystyle \tan \theta }
± tan ⁡ θ 1 + tan 2 ⁡ θ {\displaystyle \pm {\frac {\tan \theta }{\sqrt {1+\tan ^{2}\theta }}}}
cot ⁡ θ {\displaystyle \cot \theta }
± 1 1 + cot 2 ⁡ θ {\displaystyle \pm {\frac {1}{\sqrt {1+\cot ^{2}\theta }}}}
csc ⁡ θ = {\displaystyle \csc \theta =}
csc ⁡ θ = {\displaystyle \csc \theta =}
in terms of
csc ⁡ θ = {\displaystyle \csc \theta =}
sin ⁡ θ {\displaystyle \sin \theta }
1 sin ⁡ θ {\displaystyle {\frac {1}{\sin \theta }}}
csc ⁡ θ {\displaystyle \csc \theta }
csc ⁡ θ {\displaystyle \csc \theta }
cos ⁡ θ {\displaystyle \cos \theta }
± 1 1 − cos 2 ⁡ θ {\displaystyle \pm {\frac {1}{\sqrt {1-\cos ^{2}\theta }}}}
sec ⁡ θ {\displaystyle \sec \theta }
± sec ⁡ θ sec 2 ⁡ θ − 1 {\displaystyle \pm {\frac {\sec \theta }{\sqrt {\sec ^{2}\theta -1}}}}
tan ⁡ θ {\displaystyle \tan \theta }
± 1 + tan 2 ⁡ θ tan ⁡ θ {\displaystyle \pm {\frac {\sqrt {1+\tan ^{2}\theta }}{\tan \theta }}}
cot ⁡ θ {\displaystyle \cot \theta }
± 1 + cot 2 ⁡ θ {\displaystyle \pm {\sqrt {1+\cot ^{2}\theta }}}
cos ⁡ θ = {\displaystyle \cos \theta =}
cos ⁡ θ = {\displaystyle \cos \theta =}
in terms of
cos ⁡ θ = {\displaystyle \cos \theta =}
sin ⁡ θ {\displaystyle \sin \theta }
± 1 − sin 2 ⁡ θ {\displaystyle \pm {\sqrt {1-\sin ^{2}\theta }}}
csc ⁡ θ {\displaystyle \csc \theta }
± csc 2 ⁡ θ − 1 csc ⁡ θ {\displaystyle \pm {\frac {\sqrt {\csc ^{2}\theta -1}}{\csc \theta }}}
cos ⁡ θ {\displaystyle \cos \theta }
cos ⁡ θ {\displaystyle \cos \theta }
sec ⁡ θ {\displaystyle \sec \theta }
1 sec ⁡ θ {\displaystyle {\frac {1}{\sec \theta }}}
tan ⁡ θ {\displaystyle \tan \theta }
± 1 1 + tan 2 ⁡ θ {\displaystyle \pm {\frac {1}{\sqrt {1+\tan ^{2}\theta }}}}
cot ⁡ θ {\displaystyle \cot \theta }
± cot ⁡ θ 1 + cot 2 ⁡ θ {\displaystyle \pm {\frac {\cot \theta }{\sqrt {1+\cot ^{2}\theta }}}}
sec ⁡ θ = {\displaystyle \sec \theta =}
sec ⁡ θ = {\displaystyle \sec \theta =}
in terms of
sec ⁡ θ = {\displaystyle \sec \theta =}
sin ⁡ θ {\displaystyle \sin \theta }
± 1 1 − sin 2 ⁡ θ {\displaystyle \pm {\frac {1}{\sqrt {1-\sin ^{2}\theta }}}}
csc ⁡ θ {\displaystyle \csc \theta }
± csc ⁡ θ csc 2 ⁡ θ − 1 {\displaystyle \pm {\frac {\csc \theta }{\sqrt {\csc ^{2}\theta -1}}}}
cos ⁡ θ {\displaystyle \cos \theta }
1 cos ⁡ θ {\displaystyle {\frac {1}{\cos \theta }}}
sec ⁡ θ {\displaystyle \sec \theta }
sec ⁡ θ {\displaystyle \sec \theta }
tan ⁡ θ {\displaystyle \tan \theta }
± 1 + tan 2 ⁡ θ {\displaystyle \pm {\sqrt {1+\tan ^{2}\theta }}}
cot ⁡ θ {\displaystyle \cot \theta }
± 1 + cot 2 ⁡ θ cot ⁡ θ {\displaystyle \pm {\frac {\sqrt {1+\cot ^{2}\theta }}{\cot \theta }}}
tan ⁡ θ = {\displaystyle \tan \theta =}
tan ⁡ θ = {\displaystyle \tan \theta =}
in terms of
tan ⁡ θ = {\displaystyle \tan \theta =}
sin ⁡ θ {\displaystyle \sin \theta }
± sin ⁡ θ 1 − sin 2 ⁡ θ {\displaystyle \pm {\frac {\sin \theta }{\sqrt {1-\sin ^{2}\theta }}}}
csc ⁡ θ {\displaystyle \csc \theta }
± 1 csc 2 ⁡ θ − 1 {\displaystyle \pm {\frac {1}{\sqrt {\csc ^{2}\theta -1}}}}
cos ⁡ θ {\displaystyle \cos \theta }
± 1 − cos 2 ⁡ θ cos ⁡ θ {\displaystyle \pm {\frac {\sqrt {1-\cos ^{2}\theta }}{\cos \theta }}}
sec ⁡ θ {\displaystyle \sec \theta }
± sec 2 ⁡ θ − 1 {\displaystyle \pm {\sqrt {\sec ^{2}\theta -1}}}
tan ⁡ θ {\displaystyle \tan \theta }
tan ⁡ θ {\displaystyle \tan \theta }
cot ⁡ θ {\displaystyle \cot \theta }
1 cot ⁡ θ {\displaystyle {\frac {1}{\cot \theta }}}
cot ⁡ θ = {\displaystyle \cot \theta =}
cot ⁡ θ = {\displaystyle \cot \theta =}
in terms of
cot ⁡ θ = {\displaystyle \cot \theta =}
sin ⁡ θ {\displaystyle \sin \theta }
± 1 − sin 2 ⁡ θ sin ⁡ θ {\displaystyle \pm {\frac {\sqrt {1-\sin ^{2}\theta }}{\sin \theta }}}
csc ⁡ θ {\displaystyle \csc \theta }
± csc 2 ⁡ θ − 1 {\displaystyle \pm {\sqrt {\csc ^{2}\theta -1}}}
cos ⁡ θ {\displaystyle \cos \theta }
± cos ⁡ θ 1 − cos 2 ⁡ θ {\displaystyle \pm {\frac {\cos \theta }{\sqrt {1-\cos ^{2}\theta }}}}
sec ⁡ θ {\displaystyle \sec \theta }
± 1 sec 2 ⁡ θ − 1 {\displaystyle \pm {\frac {1}{\sqrt {\sec ^{2}\theta -1}}}}
tan ⁡ θ {\displaystyle \tan \theta }
1 tan ⁡ θ {\displaystyle {\frac {1}{\tan \theta }}}
cot ⁡ θ {\displaystyle \cot \theta }
cot ⁡ θ {\displaystyle \cot \theta }
in terms of
sin ⁡ θ {\displaystyle \sin \theta }
csc ⁡ θ {\displaystyle \csc \theta }
cos ⁡ θ {\displaystyle \cos \theta }
sec ⁡ θ {\displaystyle \sec \theta }
tan ⁡ θ {\displaystyle \tan \theta }
cot ⁡ θ {\displaystyle \cot \theta }
sin ⁡ θ = {\displaystyle \sin \theta =}
sin ⁡ θ {\displaystyle \sin \theta }
1 csc ⁡ θ {\displaystyle {\frac {1}{\csc \theta }}}
± 1 − cos 2 ⁡ θ {\displaystyle \pm {\sqrt {1-\cos ^{2}\theta }}}
± sec 2 ⁡ θ − 1 sec ⁡ θ {\displaystyle \pm {\frac {\sqrt {\sec ^{2}\theta -1}}{\sec \theta }}}
± tan ⁡ θ 1 + tan 2 ⁡ θ {\displaystyle \pm {\frac {\tan \theta }{\sqrt {1+\tan ^{2}\theta }}}}
± 1 1 + cot 2 ⁡ θ {\displaystyle \pm {\frac {1}{\sqrt {1+\cot ^{2}\theta }}}}
csc ⁡ θ = {\displaystyle \csc \theta =}
1 sin ⁡ θ {\displaystyle {\frac {1}{\sin \theta }}}
csc ⁡ θ {\displaystyle \csc \theta }
± 1 1 − cos 2 ⁡ θ {\displaystyle \pm {\frac {1}{\sqrt {1-\cos ^{2}\theta }}}}
± sec ⁡ θ sec 2 ⁡ θ − 1 {\displaystyle \pm {\frac {\sec \theta }{\sqrt {\sec ^{2}\theta -1}}}}
± 1 + tan 2 ⁡ θ tan ⁡ θ {\displaystyle \pm {\frac {\sqrt {1+\tan ^{2}\theta }}{\tan \theta }}}
± 1 + cot 2 ⁡ θ {\displaystyle \pm {\sqrt {1+\cot ^{2}\theta }}}
cos ⁡ θ = {\displaystyle \cos \theta =}
± 1 − sin 2 ⁡ θ {\displaystyle \pm {\sqrt {1-\sin ^{2}\theta }}}
± csc 2 ⁡ θ − 1 csc ⁡ θ {\displaystyle \pm {\frac {\sqrt {\csc ^{2}\theta -1}}{\csc \theta }}}
cos ⁡ θ {\displaystyle \cos \theta }
1 sec ⁡ θ {\displaystyle {\frac {1}{\sec \theta }}}
± 1 1 + tan 2 ⁡ θ {\displaystyle \pm {\frac {1}{\sqrt {1+\tan ^{2}\theta }}}}
± cot ⁡ θ 1 + cot 2 ⁡ θ {\displaystyle \pm {\frac {\cot \theta }{\sqrt {1+\cot ^{2}\theta }}}}
sec ⁡ θ = {\displaystyle \sec \theta =}
± 1 1 − sin 2 ⁡ θ {\displaystyle \pm {\frac {1}{\sqrt {1-\sin ^{2}\theta }}}}
± csc ⁡ θ csc 2 ⁡ θ − 1 {\displaystyle \pm {\frac {\csc \theta }{\sqrt {\csc ^{2}\theta -1}}}}
1 cos ⁡ θ {\displaystyle {\frac {1}{\cos \theta }}}
sec ⁡ θ {\displaystyle \sec \theta }
± 1 + tan 2 ⁡ θ {\displaystyle \pm {\sqrt {1+\tan ^{2}\theta }}}
± 1 + cot 2 ⁡ θ cot ⁡ θ {\displaystyle \pm {\frac {\sqrt {1+\cot ^{2}\theta }}{\cot \theta }}}
tan ⁡ θ = {\displaystyle \tan \theta =}
± sin ⁡ θ 1 − sin 2 ⁡ θ {\displaystyle \pm {\frac {\sin \theta }{\sqrt {1-\sin ^{2}\theta }}}}
± 1 csc 2 ⁡ θ − 1 {\displaystyle \pm {\frac {1}{\sqrt {\csc ^{2}\theta -1}}}}
± 1 − cos 2 ⁡ θ cos ⁡ θ {\displaystyle \pm {\frac {\sqrt {1-\cos ^{2}\theta }}{\cos \theta }}}
± sec 2 ⁡ θ − 1 {\displaystyle \pm {\sqrt {\sec ^{2}\theta -1}}}
tan ⁡ θ {\displaystyle \tan \theta }
1 cot ⁡ θ {\displaystyle {\frac {1}{\cot \theta }}}
cot ⁡ θ = {\displaystyle \cot \theta =}
± 1 − sin 2 ⁡ θ sin ⁡ θ {\displaystyle \pm {\frac {\sqrt {1-\sin ^{2}\theta }}{\sin \theta }}}
± csc 2 ⁡ θ − 1 {\displaystyle \pm {\sqrt {\csc ^{2}\theta -1}}}
± cos ⁡ θ 1 − cos 2 ⁡ θ {\displaystyle \pm {\frac {\cos \theta }{\sqrt {1-\cos ^{2}\theta }}}}
± 1 sec 2 ⁡ θ − 1 {\displaystyle \pm {\frac {1}{\sqrt {\sec ^{2}\theta -1}}}}
1 tan ⁡ θ {\displaystyle {\frac {1}{\tan \theta }}}
cot ⁡ θ {\displaystyle \cot \theta }
· Reflections, shifts, and periodicity › Reflections
sin ⁡ ( − θ ) = − sin ⁡ θ {\displaystyle \sin(-\theta )=-\sin \theta }
sin ⁡ ( − θ ) = − sin ⁡ θ {\displaystyle \sin(-\theta )=-\sin \theta }
θ {\displaystyle \theta } reflected in α = 0 {\displaystyle \alpha =0} odd/even identities
sin ⁡ ( − θ ) = − sin ⁡ θ {\displaystyle \sin(-\theta )=-\sin \theta }
θ {\displaystyle \theta } reflected in α = π 4 {\displaystyle \alpha ={\frac {\pi }{4}}}
sin ⁡ ( π 2 − θ ) = cos ⁡ θ {\displaystyle \sin \left({\tfrac {\pi }{2}}-\theta \right)=\cos \theta }
θ {\displaystyle \theta } reflected in α = π 2 {\displaystyle \alpha ={\frac {\pi }{2}}}
sin ⁡ ( π − θ ) = + sin ⁡ θ {\displaystyle \sin(\pi -\theta )=+\sin \theta }
θ {\displaystyle \theta } reflected in α = 3 π 4 {\displaystyle \alpha ={\frac {3\pi }{4}}}
sin ⁡ ( 3 π 2 − θ ) = − cos ⁡ θ {\displaystyle \sin \left({\tfrac {3\pi }{2}}-\theta \right)=-\cos \theta }
θ {\displaystyle \theta } reflected in α = π {\displaystyle \alpha =\pi } compare to α = 0 {\displaystyle \alpha =0}
sin ⁡ ( 2 π − θ ) = − sin ⁡ ( θ ) = sin ⁡ ( − θ ) {\displaystyle \sin(2\pi -\theta )=-\sin(\theta )=\sin(-\theta )}
cos ⁡ ( − θ ) = + cos ⁡ θ {\displaystyle \cos(-\theta )=+\cos \theta }
cos ⁡ ( − θ ) = + cos ⁡ θ {\displaystyle \cos(-\theta )=+\cos \theta }
θ {\displaystyle \theta } reflected in α = 0 {\displaystyle \alpha =0} odd/even identities
cos ⁡ ( − θ ) = + cos ⁡ θ {\displaystyle \cos(-\theta )=+\cos \theta }
θ {\displaystyle \theta } reflected in α = π 4 {\displaystyle \alpha ={\frac {\pi }{4}}}
cos ⁡ ( π 2 − θ ) = sin ⁡ θ {\displaystyle \cos \left({\tfrac {\pi }{2}}-\theta \right)=\sin \theta }
θ {\displaystyle \theta } reflected in α = π 2 {\displaystyle \alpha ={\frac {\pi }{2}}}
cos ⁡ ( π − θ ) = − cos ⁡ θ {\displaystyle \cos(\pi -\theta )=-\cos \theta }
θ {\displaystyle \theta } reflected in α = 3 π 4 {\displaystyle \alpha ={\frac {3\pi }{4}}}
cos ⁡ ( 3 π 2 − θ ) = − sin ⁡ θ {\displaystyle \cos \left({\tfrac {3\pi }{2}}-\theta \right)=-\sin \theta }
θ {\displaystyle \theta } reflected in α = π {\displaystyle \alpha =\pi } compare to α = 0 {\displaystyle \alpha =0}
cos ⁡ ( 2 π − θ ) = + cos ⁡ ( θ ) = cos ⁡ ( − θ ) {\displaystyle \cos(2\pi -\theta )=+\cos(\theta )=\cos(-\theta )}
tan ⁡ ( − θ ) = − tan ⁡ θ {\displaystyle \tan(-\theta )=-\tan \theta }
tan ⁡ ( − θ ) = − tan ⁡ θ {\displaystyle \tan(-\theta )=-\tan \theta }
θ {\displaystyle \theta } reflected in α = 0 {\displaystyle \alpha =0} odd/even identities
tan ⁡ ( − θ ) = − tan ⁡ θ {\displaystyle \tan(-\theta )=-\tan \theta }
θ {\displaystyle \theta } reflected in α = π 4 {\displaystyle \alpha ={\frac {\pi }{4}}}
tan ⁡ ( π 2 − θ ) = cot ⁡ θ {\displaystyle \tan \left({\tfrac {\pi }{2}}-\theta \right)=\cot \theta }
θ {\displaystyle \theta } reflected in α = π 2 {\displaystyle \alpha ={\frac {\pi }{2}}}
tan ⁡ ( π − θ ) = − tan ⁡ θ {\displaystyle \tan(\pi -\theta )=-\tan \theta }
θ {\displaystyle \theta } reflected in α = 3 π 4 {\displaystyle \alpha ={\frac {3\pi }{4}}}
tan ⁡ ( 3 π 2 − θ ) = + cot ⁡ θ {\displaystyle \tan \left({\tfrac {3\pi }{2}}-\theta \right)=+\cot \theta }
θ {\displaystyle \theta } reflected in α = π {\displaystyle \alpha =\pi } compare to α = 0 {\displaystyle \alpha =0}
tan ⁡ ( 2 π − θ ) = − tan ⁡ ( θ ) = tan ⁡ ( − θ ) {\displaystyle \tan(2\pi -\theta )=-\tan(\theta )=\tan(-\theta )}
csc ⁡ ( − θ ) = − csc ⁡ θ {\displaystyle \csc(-\theta )=-\csc \theta }
csc ⁡ ( − θ ) = − csc ⁡ θ {\displaystyle \csc(-\theta )=-\csc \theta }
θ {\displaystyle \theta } reflected in α = 0 {\displaystyle \alpha =0} odd/even identities
csc ⁡ ( − θ ) = − csc ⁡ θ {\displaystyle \csc(-\theta )=-\csc \theta }
θ {\displaystyle \theta } reflected in α = π 4 {\displaystyle \alpha ={\frac {\pi }{4}}}
csc ⁡ ( π 2 − θ ) = sec ⁡ θ {\displaystyle \csc \left({\tfrac {\pi }{2}}-\theta \right)=\sec \theta }
θ {\displaystyle \theta } reflected in α = π 2 {\displaystyle \alpha ={\frac {\pi }{2}}}
csc ⁡ ( π − θ ) = + csc ⁡ θ {\displaystyle \csc(\pi -\theta )=+\csc \theta }
θ {\displaystyle \theta } reflected in α = 3 π 4 {\displaystyle \alpha ={\frac {3\pi }{4}}}
csc ⁡ ( 3 π 2 − θ ) = − sec ⁡ θ {\displaystyle \csc \left({\tfrac {3\pi }{2}}-\theta \right)=-\sec \theta }
θ {\displaystyle \theta } reflected in α = π {\displaystyle \alpha =\pi } compare to α = 0 {\displaystyle \alpha =0}
csc ⁡ ( 2 π − θ ) = − csc ⁡ ( θ ) = csc ⁡ ( − θ ) {\displaystyle \csc(2\pi -\theta )=-\csc(\theta )=\csc(-\theta )}
sec ⁡ ( − θ ) = + sec ⁡ θ {\displaystyle \sec(-\theta )=+\sec \theta }
sec ⁡ ( − θ ) = + sec ⁡ θ {\displaystyle \sec(-\theta )=+\sec \theta }
θ {\displaystyle \theta } reflected in α = 0 {\displaystyle \alpha =0} odd/even identities
sec ⁡ ( − θ ) = + sec ⁡ θ {\displaystyle \sec(-\theta )=+\sec \theta }
θ {\displaystyle \theta } reflected in α = π 4 {\displaystyle \alpha ={\frac {\pi }{4}}}
sec ⁡ ( π 2 − θ ) = csc ⁡ θ {\displaystyle \sec \left({\tfrac {\pi }{2}}-\theta \right)=\csc \theta }
θ {\displaystyle \theta } reflected in α = π 2 {\displaystyle \alpha ={\frac {\pi }{2}}}
sec ⁡ ( π − θ ) = − sec ⁡ θ {\displaystyle \sec(\pi -\theta )=-\sec \theta }
θ {\displaystyle \theta } reflected in α = 3 π 4 {\displaystyle \alpha ={\frac {3\pi }{4}}}
sec ⁡ ( 3 π 2 − θ ) = − csc ⁡ θ {\displaystyle \sec \left({\tfrac {3\pi }{2}}-\theta \right)=-\csc \theta }
θ {\displaystyle \theta } reflected in α = π {\displaystyle \alpha =\pi } compare to α = 0 {\displaystyle \alpha =0}
sec ⁡ ( 2 π − θ ) = + sec ⁡ ( θ ) = sec ⁡ ( − θ ) {\displaystyle \sec(2\pi -\theta )=+\sec(\theta )=\sec(-\theta )}
cot ⁡ ( − θ ) = − cot ⁡ θ {\displaystyle \cot(-\theta )=-\cot \theta }
cot ⁡ ( − θ ) = − cot ⁡ θ {\displaystyle \cot(-\theta )=-\cot \theta }
θ {\displaystyle \theta } reflected in α = 0 {\displaystyle \alpha =0} odd/even identities
cot ⁡ ( − θ ) = − cot ⁡ θ {\displaystyle \cot(-\theta )=-\cot \theta }
θ {\displaystyle \theta } reflected in α = π 4 {\displaystyle \alpha ={\frac {\pi }{4}}}
cot ⁡ ( π 2 − θ ) = tan ⁡ θ {\displaystyle \cot \left({\tfrac {\pi }{2}}-\theta \right)=\tan \theta }
θ {\displaystyle \theta } reflected in α = π 2 {\displaystyle \alpha ={\frac {\pi }{2}}}
cot ⁡ ( π − θ ) = − cot ⁡ θ {\displaystyle \cot(\pi -\theta )=-\cot \theta }
θ {\displaystyle \theta } reflected in α = 3 π 4 {\displaystyle \alpha ={\frac {3\pi }{4}}}
cot ⁡ ( 3 π 2 − θ ) = + tan ⁡ θ {\displaystyle \cot \left({\tfrac {3\pi }{2}}-\theta \right)=+\tan \theta }
θ {\displaystyle \theta } reflected in α = π {\displaystyle \alpha =\pi } compare to α = 0 {\displaystyle \alpha =0}
cot ⁡ ( 2 π − θ ) = − cot ⁡ ( θ ) = cot ⁡ ( − θ ) {\displaystyle \cot(2\pi -\theta )=-\cot(\theta )=\cot(-\theta )}
θ {\displaystyle \theta } reflected in α = 0 {\displaystyle \alpha =0} odd/even identities
θ {\displaystyle \theta } reflected in α = π 4 {\displaystyle \alpha ={\frac {\pi }{4}}}
θ {\displaystyle \theta } reflected in α = π 2 {\displaystyle \alpha ={\frac {\pi }{2}}}
θ {\displaystyle \theta } reflected in α = 3 π 4 {\displaystyle \alpha ={\frac {3\pi }{4}}}
θ {\displaystyle \theta } reflected in α = π {\displaystyle \alpha =\pi } compare to α = 0 {\displaystyle \alpha =0}
sin ⁡ ( − θ ) = − sin ⁡ θ {\displaystyle \sin(-\theta )=-\sin \theta }
sin ⁡ ( π 2 − θ ) = cos ⁡ θ {\displaystyle \sin \left({\tfrac {\pi }{2}}-\theta ight)=\cos \theta }
sin ⁡ ( π − θ ) = + sin ⁡ θ {\displaystyle \sin(\pi -\theta )=+\sin \theta }
sin ⁡ ( 3 π 2 − θ ) = − cos ⁡ θ {\displaystyle \sin \left({\tfrac {3\pi }{2}}-\theta ight)=-\cos \theta }
sin ⁡ ( 2 π − θ ) = − sin ⁡ ( θ ) = sin ⁡ ( − θ ) {\displaystyle \sin(2\pi -\theta )=-\sin(\theta )=\sin(-\theta )}
cos ⁡ ( − θ ) = + cos ⁡ θ {\displaystyle \cos(-\theta )=+\cos \theta }
cos ⁡ ( π 2 − θ ) = sin ⁡ θ {\displaystyle \cos \left({\tfrac {\pi }{2}}-\theta ight)=\sin \theta }
cos ⁡ ( π − θ ) = − cos ⁡ θ {\displaystyle \cos(\pi -\theta )=-\cos \theta }
cos ⁡ ( 3 π 2 − θ ) = − sin ⁡ θ {\displaystyle \cos \left({\tfrac {3\pi }{2}}-\theta ight)=-\sin \theta }
cos ⁡ ( 2 π − θ ) = + cos ⁡ ( θ ) = cos ⁡ ( − θ ) {\displaystyle \cos(2\pi -\theta )=+\cos(\theta )=\cos(-\theta )}
tan ⁡ ( − θ ) = − tan ⁡ θ {\displaystyle \tan(-\theta )=-\tan \theta }
tan ⁡ ( π 2 − θ ) = cot ⁡ θ {\displaystyle \tan \left({\tfrac {\pi }{2}}-\theta ight)=\cot \theta }
tan ⁡ ( π − θ ) = − tan ⁡ θ {\displaystyle \tan(\pi -\theta )=-\tan \theta }
tan ⁡ ( 3 π 2 − θ ) = + cot ⁡ θ {\displaystyle \tan \left({\tfrac {3\pi }{2}}-\theta ight)=+\cot \theta }
tan ⁡ ( 2 π − θ ) = − tan ⁡ ( θ ) = tan ⁡ ( − θ ) {\displaystyle \tan(2\pi -\theta )=-\tan(\theta )=\tan(-\theta )}
csc ⁡ ( − θ ) = − csc ⁡ θ {\displaystyle \csc(-\theta )=-\csc \theta }
csc ⁡ ( π 2 − θ ) = sec ⁡ θ {\displaystyle \csc \left({\tfrac {\pi }{2}}-\theta ight)=\sec \theta }
csc ⁡ ( π − θ ) = + csc ⁡ θ {\displaystyle \csc(\pi -\theta )=+\csc \theta }
csc ⁡ ( 3 π 2 − θ ) = − sec ⁡ θ {\displaystyle \csc \left({\tfrac {3\pi }{2}}-\theta ight)=-\sec \theta }
csc ⁡ ( 2 π − θ ) = − csc ⁡ ( θ ) = csc ⁡ ( − θ ) {\displaystyle \csc(2\pi -\theta )=-\csc(\theta )=\csc(-\theta )}
sec ⁡ ( − θ ) = + sec ⁡ θ {\displaystyle \sec(-\theta )=+\sec \theta }
sec ⁡ ( π 2 − θ ) = csc ⁡ θ {\displaystyle \sec \left({\tfrac {\pi }{2}}-\theta ight)=\csc \theta }
sec ⁡ ( π − θ ) = − sec ⁡ θ {\displaystyle \sec(\pi -\theta )=-\sec \theta }
sec ⁡ ( 3 π 2 − θ ) = − csc ⁡ θ {\displaystyle \sec \left({\tfrac {3\pi }{2}}-\theta ight)=-\csc \theta }
sec ⁡ ( 2 π − θ ) = + sec ⁡ ( θ ) = sec ⁡ ( − θ ) {\displaystyle \sec(2\pi -\theta )=+\sec(\theta )=\sec(-\theta )}
cot ⁡ ( − θ ) = − cot ⁡ θ {\displaystyle \cot(-\theta )=-\cot \theta }
cot ⁡ ( π 2 − θ ) = tan ⁡ θ {\displaystyle \cot \left({\tfrac {\pi }{2}}-\theta ight)=\tan \theta }
cot ⁡ ( π − θ ) = − cot ⁡ θ {\displaystyle \cot(\pi -\theta )=-\cot \theta }
cot ⁡ ( 3 π 2 − θ ) = + tan ⁡ θ {\displaystyle \cot \left({\tfrac {3\pi }{2}}-\theta ight)=+\tan \theta }
cot ⁡ ( 2 π − θ ) = − cot ⁡ ( θ ) = cot ⁡ ( − θ ) {\displaystyle \cot(2\pi -\theta )=-\cot(\theta )=\cot(-\theta )}
· Reflections, shifts, and periodicity › Shifts and periodicity
sin ⁡ ( θ ± π 2 ) = ± cos ⁡ θ {\displaystyle \sin(\theta \pm {\tfrac {\pi }{2}})=\pm \cos \theta }
sin ⁡ ( θ ± π 2 ) = ± cos ⁡ θ {\displaystyle \sin(\theta \pm {\tfrac {\pi }{2}})=\pm \cos \theta }
Shift by one quarter period
sin ⁡ ( θ ± π 2 ) = ± cos ⁡ θ {\displaystyle \sin(\theta \pm {\tfrac {\pi }{2}})=\pm \cos \theta }
Shift by one half period
sin ⁡ ( θ + π ) = − sin ⁡ θ {\displaystyle \sin(\theta +\pi )=-\sin \theta }
Shift by full periods
sin ⁡ ( θ + k ⋅ 2 π ) = + sin ⁡ θ {\displaystyle \sin(\theta +k\cdot 2\pi )=+\sin \theta }
Period
2 π {\displaystyle 2\pi }
cos ⁡ ( θ ± π 2 ) = ∓ sin ⁡ θ {\displaystyle \cos(\theta \pm {\tfrac {\pi }{2}})=\mp \sin \theta }
cos ⁡ ( θ ± π 2 ) = ∓ sin ⁡ θ {\displaystyle \cos(\theta \pm {\tfrac {\pi }{2}})=\mp \sin \theta }
Shift by one quarter period
cos ⁡ ( θ ± π 2 ) = ∓ sin ⁡ θ {\displaystyle \cos(\theta \pm {\tfrac {\pi }{2}})=\mp \sin \theta }
Shift by one half period
cos ⁡ ( θ + π ) = − cos ⁡ θ {\displaystyle \cos(\theta +\pi )=-\cos \theta }
Shift by full periods
cos ⁡ ( θ + k ⋅ 2 π ) = + cos ⁡ θ {\displaystyle \cos(\theta +k\cdot 2\pi )=+\cos \theta }
Period
2 π {\displaystyle 2\pi }
csc ⁡ ( θ ± π 2 ) = ± sec ⁡ θ {\displaystyle \csc(\theta \pm {\tfrac {\pi }{2}})=\pm \sec \theta }
csc ⁡ ( θ ± π 2 ) = ± sec ⁡ θ {\displaystyle \csc(\theta \pm {\tfrac {\pi }{2}})=\pm \sec \theta }
Shift by one quarter period
csc ⁡ ( θ ± π 2 ) = ± sec ⁡ θ {\displaystyle \csc(\theta \pm {\tfrac {\pi }{2}})=\pm \sec \theta }
Shift by one half period
csc ⁡ ( θ + π ) = − csc ⁡ θ {\displaystyle \csc(\theta +\pi )=-\csc \theta }
Shift by full periods
csc ⁡ ( θ + k ⋅ 2 π ) = + csc ⁡ θ {\displaystyle \csc(\theta +k\cdot 2\pi )=+\csc \theta }
Period
2 π {\displaystyle 2\pi }
sec ⁡ ( θ ± π 2 ) = ∓ csc ⁡ θ {\displaystyle \sec(\theta \pm {\tfrac {\pi }{2}})=\mp \csc \theta }
sec ⁡ ( θ ± π 2 ) = ∓ csc ⁡ θ {\displaystyle \sec(\theta \pm {\tfrac {\pi }{2}})=\mp \csc \theta }
Shift by one quarter period
sec ⁡ ( θ ± π 2 ) = ∓ csc ⁡ θ {\displaystyle \sec(\theta \pm {\tfrac {\pi }{2}})=\mp \csc \theta }
Shift by one half period
sec ⁡ ( θ + π ) = − sec ⁡ θ {\displaystyle \sec(\theta +\pi )=-\sec \theta }
Shift by full periods
sec ⁡ ( θ + k ⋅ 2 π ) = + sec ⁡ θ {\displaystyle \sec(\theta +k\cdot 2\pi )=+\sec \theta }
Period
2 π {\displaystyle 2\pi }
tan ⁡ ( θ ± π 4 ) = tan ⁡ θ ± 1 1 ∓ tan ⁡ θ {\displaystyle \tan(\theta \pm {\tfrac {\pi }{4}})={\tfrac {\tan \theta \pm 1}{1\mp \tan \theta }}}
tan ⁡ ( θ ± π 4 ) = tan ⁡ θ ± 1 1 ∓ tan ⁡ θ {\displaystyle \tan(\theta \pm {\tfrac {\pi }{4}})={\tfrac {\tan \theta \pm 1}{1\mp \tan \theta }}}
Shift by one quarter period
tan ⁡ ( θ ± π 4 ) = tan ⁡ θ ± 1 1 ∓ tan ⁡ θ {\displaystyle \tan(\theta \pm {\tfrac {\pi }{4}})={\tfrac {\tan \theta \pm 1}{1\mp \tan \theta }}}
Shift by one half period
tan ⁡ ( θ + π 2 ) = − cot ⁡ θ {\displaystyle \tan(\theta +{\tfrac {\pi }{2}})=-\cot \theta }
Shift by full periods
tan ⁡ ( θ + k ⋅ π ) = + tan ⁡ θ {\displaystyle \tan(\theta +k\cdot \pi )=+\tan \theta }
Period
π {\displaystyle \pi }
cot ⁡ ( θ ± π 4 ) = cot ⁡ θ ∓ 1 1 ± cot ⁡ θ {\displaystyle \cot(\theta \pm {\tfrac {\pi }{4}})={\tfrac {\cot \theta \mp 1}{1\pm \cot \theta }}}
cot ⁡ ( θ ± π 4 ) = cot ⁡ θ ∓ 1 1 ± cot ⁡ θ {\displaystyle \cot(\theta \pm {\tfrac {\pi }{4}})={\tfrac {\cot \theta \mp 1}{1\pm \cot \theta }}}
Shift by one quarter period
cot ⁡ ( θ ± π 4 ) = cot ⁡ θ ∓ 1 1 ± cot ⁡ θ {\displaystyle \cot(\theta \pm {\tfrac {\pi }{4}})={\tfrac {\cot \theta \mp 1}{1\pm \cot \theta }}}
Shift by one half period
cot ⁡ ( θ + π 2 ) = − tan ⁡ θ {\displaystyle \cot(\theta +{\tfrac {\pi }{2}})=-\tan \theta }
Shift by full periods
cot ⁡ ( θ + k ⋅ π ) = + cot ⁡ θ {\displaystyle \cot(\theta +k\cdot \pi )=+\cot \theta }
Period
π {\displaystyle \pi }
Shift by one quarter period
Shift by one half period
Shift by full periods
Period
sin ⁡ ( θ ± π 2 ) = ± cos ⁡ θ {\displaystyle \sin(\theta \pm {\tfrac {\pi }{2}})=\pm \cos \theta }
sin ⁡ ( θ + π ) = − sin ⁡ θ {\displaystyle \sin(\theta +\pi )=-\sin \theta }
sin ⁡ ( θ + k ⋅ 2 π ) = + sin ⁡ θ {\displaystyle \sin(\theta +k\cdot 2\pi )=+\sin \theta }
2 π {\displaystyle 2\pi }
cos ⁡ ( θ ± π 2 ) = ∓ sin ⁡ θ {\displaystyle \cos(\theta \pm {\tfrac {\pi }{2}})=\mp \sin \theta }
cos ⁡ ( θ + π ) = − cos ⁡ θ {\displaystyle \cos(\theta +\pi )=-\cos \theta }
cos ⁡ ( θ + k ⋅ 2 π ) = + cos ⁡ θ {\displaystyle \cos(\theta +k\cdot 2\pi )=+\cos \theta }
2 π {\displaystyle 2\pi }
csc ⁡ ( θ ± π 2 ) = ± sec ⁡ θ {\displaystyle \csc(\theta \pm {\tfrac {\pi }{2}})=\pm \sec \theta }
csc ⁡ ( θ + π ) = − csc ⁡ θ {\displaystyle \csc(\theta +\pi )=-\csc \theta }
csc ⁡ ( θ + k ⋅ 2 π ) = + csc ⁡ θ {\displaystyle \csc(\theta +k\cdot 2\pi )=+\csc \theta }
2 π {\displaystyle 2\pi }
sec ⁡ ( θ ± π 2 ) = ∓ csc ⁡ θ {\displaystyle \sec(\theta \pm {\tfrac {\pi }{2}})=\mp \csc \theta }
sec ⁡ ( θ + π ) = − sec ⁡ θ {\displaystyle \sec(\theta +\pi )=-\sec \theta }
sec ⁡ ( θ + k ⋅ 2 π ) = + sec ⁡ θ {\displaystyle \sec(\theta +k\cdot 2\pi )=+\sec \theta }
2 π {\displaystyle 2\pi }
tan ⁡ ( θ ± π 4 ) = tan ⁡ θ ± 1 1 ∓ tan ⁡ θ {\displaystyle \tan(\theta \pm {\tfrac {\pi }{4}})={\tfrac {\tan \theta \pm 1}{1\mp \tan \theta }}}
tan ⁡ ( θ + π 2 ) = − cot ⁡ θ {\displaystyle \tan(\theta +{\tfrac {\pi }{2}})=-\cot \theta }
tan ⁡ ( θ + k ⋅ π ) = + tan ⁡ θ {\displaystyle \tan(\theta +k\cdot \pi )=+\tan \theta }
π {\displaystyle \pi }
cot ⁡ ( θ ± π 4 ) = cot ⁡ θ ∓ 1 1 ± cot ⁡ θ {\displaystyle \cot(\theta \pm {\tfrac {\pi }{4}})={\tfrac {\cot \theta \mp 1}{1\pm \cot \theta }}}
cot ⁡ ( θ + π 2 ) = − tan ⁡ θ {\displaystyle \cot(\theta +{\tfrac {\pi }{2}})=-\tan \theta }
cot ⁡ ( θ + k ⋅ π ) = + cot ⁡ θ {\displaystyle \cot(\theta +k\cdot \pi )=+\cot \theta }
π {\displaystyle \pi }
· Angle sum and difference identities
Cosine
Cosine
Sine
Cosine
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
cos ⁡ ( α ± β ) {\displaystyle \cos(\alpha \pm \beta )}
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
= {\displaystyle =}
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
cos ⁡ α cos ⁡ β ∓ sin ⁡ α sin ⁡ β {\displaystyle \cos \alpha \cos \beta \mp \sin \alpha \sin \beta }
Tangent
Tangent
Sine
Tangent
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
tan ⁡ ( α ± β ) {\displaystyle \tan(\alpha \pm \beta )}
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
= {\displaystyle =}
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
tan ⁡ α ± tan ⁡ β 1 ∓ tan ⁡ α tan ⁡ β {\displaystyle {\frac {\tan \alpha \pm \tan \beta }{1\mp \tan \alpha \tan \beta }}}
Cosecant
Cosecant
Sine
Cosecant
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
csc ⁡ ( α ± β ) {\displaystyle \csc(\alpha \pm \beta )}
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
= {\displaystyle =}
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
sec ⁡ α sec ⁡ β csc ⁡ α csc ⁡ β sec ⁡ α csc ⁡ β ± csc ⁡ α sec ⁡ β {\displaystyle {\frac {\sec \alpha \sec \beta \csc \alpha \csc \beta }{\sec \alpha \csc \beta \pm \csc \alpha \sec \beta }}}
Secant
Secant
Sine
Secant
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
sec ⁡ ( α ± β ) {\displaystyle \sec(\alpha \pm \beta )}
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
= {\displaystyle =}
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
sec ⁡ α sec ⁡ β csc ⁡ α csc ⁡ β csc ⁡ α csc ⁡ β ∓ sec ⁡ α sec ⁡ β {\displaystyle {\frac {\sec \alpha \sec \beta \csc \alpha \csc \beta }{\csc \alpha \csc \beta \mp \sec \alpha \sec \beta }}}
Cotangent
Cotangent
Sine
Cotangent
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
cot ⁡ ( α ± β ) {\displaystyle \cot(\alpha \pm \beta )}
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
= {\displaystyle =}
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
cot ⁡ α cot ⁡ β ∓ 1 cot ⁡ β ± cot ⁡ α {\displaystyle {\frac {\cot \alpha \cot \beta \mp 1}{\cot \beta \pm \cot \alpha }}}
Arcsine
Arcsine
Sine
Arcsine
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
arcsin ⁡ x ± arcsin ⁡ y {\displaystyle \arcsin x\pm \arcsin y}
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
= {\displaystyle =}
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
arcsin ⁡ ( x 1 − y 2 ± y 1 − x 2 y ) {\displaystyle \arcsin \left(x{\sqrt {1-y^{2}}}\pm y{\sqrt {1-x^{2}{\vphantom {y}}}}\right)}
Arccosine
Arccosine
Sine
Arccosine
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
arccos ⁡ x ± arccos ⁡ y {\displaystyle \arccos x\pm \arccos y}
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
= {\displaystyle =}
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
arccos ⁡ ( x y ∓ ( 1 − x 2 ) ( 1 − y 2 ) ) {\displaystyle \arccos \left(xy\mp {\sqrt {\left(1-x^{2}\right)\left(1-y^{2}\right)}}\right)}
Arctangent
Arctangent
Sine
Arctangent
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
arctan ⁡ x ± arctan ⁡ y {\displaystyle \arctan x\pm \arctan y}
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
= {\displaystyle =}
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
arctan ⁡ ( x ± y 1 ∓ x y ) {\displaystyle \arctan \left({\frac {x\pm y}{1\mp xy}}\right)}
Arccotangent
Arccotangent
Sine
Arccotangent
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
arccot ⁡ x ± arccot ⁡ y {\displaystyle \operatorname {arccot} x\pm \operatorname {arccot} y}
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
= {\displaystyle =}
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
arccot ⁡ ( x y ∓ 1 y ± x ) {\displaystyle \operatorname {arccot} \left({\frac {xy\mp 1}{y\pm x}}\right)}
Sine
sin ⁡ ( α ± β ) {\displaystyle \sin(\alpha \pm \beta )}
= {\displaystyle =}
sin ⁡ α cos ⁡ β ± cos ⁡ α sin ⁡ β {\displaystyle \sin \alpha \cos \beta \pm \cos \alpha \sin \beta }
Cosine
cos ⁡ ( α ± β ) {\displaystyle \cos(\alpha \pm \beta )}
= {\displaystyle =}
cos ⁡ α cos ⁡ β ∓ sin ⁡ α sin ⁡ β {\displaystyle \cos \alpha \cos \beta \mp \sin \alpha \sin \beta }
Tangent
tan ⁡ ( α ± β ) {\displaystyle \tan(\alpha \pm \beta )}
= {\displaystyle =}
tan ⁡ α ± tan ⁡ β 1 ∓ tan ⁡ α tan ⁡ β {\displaystyle {\frac {\tan \alpha \pm \tan \beta }{1\mp \tan \alpha \tan \beta }}}
Cosecant
csc ⁡ ( α ± β ) {\displaystyle \csc(\alpha \pm \beta )}
= {\displaystyle =}
sec ⁡ α sec ⁡ β csc ⁡ α csc ⁡ β sec ⁡ α csc ⁡ β ± csc ⁡ α sec ⁡ β {\displaystyle {\frac {\sec \alpha \sec \beta \csc \alpha \csc \beta }{\sec \alpha \csc \beta \pm \csc \alpha \sec \beta }}}
Secant
sec ⁡ ( α ± β ) {\displaystyle \sec(\alpha \pm \beta )}
= {\displaystyle =}
sec ⁡ α sec ⁡ β csc ⁡ α csc ⁡ β csc ⁡ α csc ⁡ β ∓ sec ⁡ α sec ⁡ β {\displaystyle {\frac {\sec \alpha \sec \beta \csc \alpha \csc \beta }{\csc \alpha \csc \beta \mp \sec \alpha \sec \beta }}}
Cotangent
cot ⁡ ( α ± β ) {\displaystyle \cot(\alpha \pm \beta )}
= {\displaystyle =}
cot ⁡ α cot ⁡ β ∓ 1 cot ⁡ β ± cot ⁡ α {\displaystyle {\frac {\cot \alpha \cot \beta \mp 1}{\cot \beta \pm \cot \alpha }}}
Arcsine
arcsin ⁡ x ± arcsin ⁡
= {\displaystyle =}
arcsin ⁡ ( x 1 − y 2 ± y 1 − x 2 y ) {\displaystyle \arcsin \left(x{\sqrt {1-y^{2}}}\pm {\vphantom {y}}}} ight)}
Arccosine
arccos ⁡ x ± arccos ⁡
= {\displaystyle =}
arccos ⁡ ( x y ∓ ( 1 − x 2 ) ( 1 − y 2 ) ) {\displaystyle \arccos \left(xy\mp {\sqrt {\left(1-x^{2} ight)\left(1-y^{2} ight)}} ight)}
Arctangent
arctan ⁡ x ± arctan ⁡
= {\displaystyle =}
arctan ⁡ ( x ± y 1 ∓ x y ) {\displaystyle \arctan \left({\frac {x\pm y}{1\mp xy}} ight)}
Arccotangent
arccot ⁡ x ± arccot ⁡ x\pm \operatorname {arccot} y}
= {\displaystyle =}
arccot ⁡ ( x y ∓ 1 y ± x ) {\displaystyle \operatorname {arccot} \left({\frac {xy\mp 1}{y\pm x}} ight)}
· Multiple-angle and half-angle formulae
de Moivre's formula, i is the imaginary unit
de Moivre's formula, i is the imaginary unit
Tn is the nth Chebyshev polynomial
de Moivre's formula, i is the imaginary unit
cos ⁡ ( n θ ) = T n ( cos ⁡ θ ) {\displaystyle \cos(n\theta )=T_{n}(\cos \theta )}
cos ⁡ ( n θ ) + i sin ⁡ ( n θ ) = ( cos ⁡ θ + i sin ⁡ θ ) n {\displaystyle \cos(n\theta )+i\sin(n\theta )=(\cos \theta +i\sin \theta )^{n}}
Tn is the nth Chebyshev polynomial
cos ⁡ ( n θ ) = T n ( cos ⁡ θ ) {\displaystyle \cos(n\theta )=T_{n}(\cos \theta )}
de Moivre's formula, i is the imaginary unit
cos ⁡ ( n θ ) + i sin ⁡ ( n θ ) = ( cos ⁡ θ + i sin ⁡ θ ) }
Double-angle formula
Double-angle formula
Col 1
Double-angle formula
Sine
sin ⁡ ( 2 θ ) = 2 sin ⁡ θ cos ⁡ θ   = 2 tan ⁡ θ 1 + tan 2 ⁡ θ {\displaystyle {\begin{aligned}\sin(2\theta )&=2\sin \theta \cos \theta \ \\&={\frac {2\tan \theta }{1+\tan ^{2}\theta }}\end{aligned}}}
Cosine
cos ⁡ ( 2 θ ) = cos 2 ⁡ θ − sin 2 ⁡ θ = 2 cos 2 ⁡ θ − 1 = 1 − 2 sin 2 ⁡ θ = 1 − tan 2 ⁡ θ 1 + tan 2 ⁡ θ {\displaystyle {\begin{aligned}\cos(2\theta )&=\cos ^{2}\theta -\sin ^{2}\theta \\&=2\cos ^{2}\theta -1\\&=1-2\sin ^{2}\theta \\&={\frac {1-\tan ^{2}\theta }{1+\tan ^{2}\theta }}\end{aligned}}}
Tangent
tan ⁡ ( 2 θ ) = 2 tan ⁡ θ 1 − tan 2 ⁡ θ {\displaystyle \tan(2\theta )={\frac {2\tan \theta }{1-\tan ^{2}\theta }}}
Cotangent
cot ⁡ ( 2 θ ) = cot 2 ⁡ θ − 1 2 cot ⁡ θ {\displaystyle \cot(2\theta )={\frac {\cot ^{2}\theta -1}{2\cot \theta }}}
Triple-angle formula
Triple-angle formula
Col 1
Triple-angle formula
Sine
sin ⁡ ( 3 θ ) = − sin 3 ⁡ θ + 3 cos 2 ⁡ θ sin ⁡ θ = − 4 sin 3 ⁡ θ + 3 sin ⁡ θ {\displaystyle {\begin{aligned}\sin(3\theta )&=-\sin ^{3}\theta +3\cos ^{2}\theta \sin \theta \\&=-4\sin ^{3}\theta +3\sin \theta \end{aligned}}}
Cosine
cos ⁡ ( 3 θ ) = cos 3 ⁡ θ − 3 sin 2 ⁡ θ cos ⁡ θ = 4 cos 3 ⁡ θ − 3 cos ⁡ θ {\displaystyle {\begin{aligned}\cos(3\theta )&=\cos ^{3}\theta -3\sin ^{2}\theta \cos \theta \\&=4\cos ^{3}\theta -3\cos \theta \end{aligned}}}
Tangent
tan ⁡ ( 3 θ ) = 3 tan ⁡ θ − tan 3 ⁡ θ 1 − 3 tan 2 ⁡ θ {\displaystyle \tan(3\theta )={\frac {3\tan \theta -\tan ^{3}\theta }{1-3\tan ^{2}\theta }}}
Cotangent
cot ⁡ ( 3 θ ) = 3 cot ⁡ θ − cot 3 ⁡ θ 1 − 3 cot 2 ⁡ θ {\displaystyle \cot(3\theta )={\frac {3\cot \theta -\cot ^{3}\theta }{1-3\cot ^{2}\theta }}}
Half-angle formula
Half-angle formula
Col 1
Half-angle formula
Sine
sin ⁡ θ 2 = sgn ⁡ ( sin ⁡ θ 2 ) 1 − cos ⁡ θ 2 ( or  sin 2 ⁡ θ 2 = 1 − cos ⁡ θ 2 ) {\displaystyle {\begin{aligned}&\sin {\frac {\theta }{2}}=\operatorname {sgn} \left(\sin {\frac {\theta }{2}}\right){\sqrt {\frac {1-\cos \theta }{2}}}\\\\&\left({\text{or }}\sin ^{2}{\frac {\theta }{2}}={\frac {1-\cos \theta }{2}}\right)\end{aligned}}}
Cosine
cos ⁡ θ 2 = sgn ⁡ ( cos ⁡ θ 2 ) 1 + cos ⁡ θ 2 ( or  cos 2 ⁡ θ 2 = 1 + cos ⁡ θ 2 ) {\displaystyle {\begin{aligned}&\cos {\frac {\theta }{2}}=\operatorname {sgn} \left(\cos {\frac {\theta }{2}}\right){\sqrt {\frac {1+\cos \theta }{2}}}\\\\&\left({\text{or }}\cos ^{2}{\frac {\theta }{2}}={\frac {1+\cos \theta }{2}}\right)\end{aligned}}}
Tangent
tan ⁡ θ 2 = csc ⁡ θ − cot ⁡ θ = ± 1 − cos ⁡ θ 1 + cos ⁡ θ = sin ⁡ θ 1 + cos ⁡ θ = 1 − cos ⁡ θ sin ⁡ θ tan ⁡ η + θ 2 = sin ⁡ η + sin ⁡ θ cos ⁡ η + cos ⁡ θ tan ⁡ ( θ 2 + π 4 ) = sec ⁡ θ + tan ⁡ θ 1 − sin ⁡ θ 1 + sin ⁡ θ = | 1 − tan ⁡ θ 2 | | 1 + tan ⁡ θ 2 | tan ⁡ θ 2 = tan ⁡ θ 1 + 1 + tan 2 ⁡ θ for  θ ∈ ( − π 2 , π 2 ) {\displaystyle {\begin{aligned}\tan {\frac {\theta }{2}}&=\csc \theta -\cot \theta \\&=\pm \,{\sqrt {\frac {1-\cos \theta }{1+\cos \theta }}}\\[3pt]&={\frac {\sin \theta }{1+\cos \theta }}\\[3pt]&={\frac {1-\cos \theta }{\sin \theta }}\\[5pt]\tan {\frac {\eta +\theta }{2}}&={\frac {\sin \eta +\sin \theta }{\cos \eta +\cos \theta }}\\[5pt]\tan \left({\frac {\theta }{2}}+{\frac {\pi }{4}}\right)&=\sec \theta +\tan \theta \\[5pt]{\sqrt {\frac {1-\sin \theta }{1+\sin \theta }}}&={\frac {\left|1-\tan {\frac {\theta }{2}}\right|}{\left|1+\tan {\frac {\theta }{2}}\right|}}\\[5pt]\tan {\frac {\theta }{2}}&={\frac {\tan \theta }{1+{\sqrt {1+\tan ^{2}\theta }}}}\\&{\text{for }}\theta \in \left(-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right)\end{aligned}}}
Cotangent
cot ⁡ θ 2 = csc ⁡ θ + cot ⁡ θ = ± 1 + cos ⁡ θ 1 − cos ⁡ θ = sin ⁡ θ 1 − cos ⁡ θ = 1 + cos ⁡ θ sin ⁡ θ {\displaystyle {\begin{aligned}\cot {\frac {\theta }{2}}&=\csc \theta +\cot \theta \\&=\pm \,{\sqrt {\frac {1+\cos \theta }{1-\cos \theta }}}\\[3pt]&={\frac {\sin \theta }{1-\cos \theta }}\\[4pt]&={\frac {1+\cos \theta }{\sin \theta }}\end{aligned}}}
Sine
Cosine
Tangent
Cotangent
Double-angle formula
sin ⁡ ( 2 θ ) = 2 sin ⁡ θ cos ⁡ θ = 2 tan ⁡ θ 1 + tan 2 ⁡ θ {\displaystyle {\begin{aligned}\sin(2\theta )&=2\sin \theta \cos \theta \ \\&={\frac {2\tan \theta }{1+\tan ^{2}\theta }}\end{aligned}}}
cos ⁡ ( 2 θ ) = cos 2 ⁡ θ − sin 2 ⁡ θ = 2 cos 2 ⁡ θ − 1 = 1 − 2 sin 2 ⁡ θ = 1 − tan 2 ⁡ θ 1 + tan 2 ⁡ θ {\displaystyle {\begin{aligned}\cos(2\theta )&=\cos ^{2}\theta -\sin ^{2}\theta \\&=2\cos ^{2}\theta -1\\&=1-2\sin ^{2}\theta \\&={\frac {1-\tan ^{2}\theta }{1+\tan ^{2}\theta }}\end{aligned}}}
tan ⁡ ( 2 θ ) = 2 tan ⁡ θ 1 − tan 2 ⁡ θ {\displaystyle \tan(2\theta )={\frac {2\tan \theta }{1-\tan ^{2}\theta }}}
cot ⁡ ( 2 θ ) = cot 2 ⁡ θ − 1 2 cot ⁡ θ {\displaystyle \cot(2\theta )={\frac {\cot ^{2}\theta -1}{2\cot \theta }}}
Triple-angle formula
sin ⁡ ( 3 θ ) = − sin 3 ⁡ θ + 3 cos 2 ⁡ θ sin ⁡ θ = − 4 sin 3 ⁡ θ + 3 sin ⁡ θ {\displaystyle {\begin{aligned}\sin(3\theta )&=-\sin ^{3}\theta +3\cos ^{2}\theta \sin \theta \\&=-4\sin ^{3}\theta +3\sin \theta \end{aligned}}}
cos ⁡ ( 3 θ ) = cos 3 ⁡ θ − 3 sin 2 ⁡ θ cos ⁡ θ = 4 cos 3 ⁡ θ − 3 cos ⁡ θ {\displaystyle {\begin{aligned}\cos(3\theta )&=\cos ^{3}\theta -3\sin ^{2}\theta \cos \theta \\&=4\cos ^{3}\theta -3\cos \theta \end{aligned}}}
tan ⁡ ( 3 θ ) = 3 tan ⁡ θ − tan 3 ⁡ θ 1 − 3 tan 2 ⁡ θ {\displaystyle \tan(3\theta )={\frac {3\tan \theta -\tan ^{3}\theta }{1-3\tan ^{2}\theta }}}
cot ⁡ ( 3 θ ) = 3 cot ⁡ θ − cot 3 ⁡ θ 1 − 3 cot 2 ⁡ θ {\displaystyle \cot(3\theta )={\frac {3\cot \theta -\cot ^{3}\theta }{1-3\cot ^{2}\theta }}}
Half-angle formula
sin ⁡ θ 2 = sgn ⁡ ( sin ⁡ θ 2 ) 1 − cos ⁡ θ 2 ( or sin 2 ⁡ θ 2 = 1 − cos ⁡ θ 2 ) {\displaystyle {\begin{aligned}&\sin {\frac {\theta }{2}}=\operatorname {sgn} \left(\sin {\frac {\theta }{2}} ight){\sqrt {\frac {1-\cos \theta }{2}}}\\\\&\left({\text{or }}\sin ^{2}{\frac {\theta }{2}}={\frac {1-\cos \theta }{2}} ight)\end{aligned}}}
cos ⁡ θ 2 = sgn ⁡ ( cos ⁡ θ 2 ) 1 + cos ⁡ θ 2 ( or cos 2 ⁡ θ 2 = 1 + cos ⁡ θ 2 ) {\displaystyle {\begin{aligned}&\cos {\frac {\theta }{2}}=\operatorname {sgn} \left(\cos {\frac {\theta }{2}} ight){\sqrt {\frac {1+\cos \theta }{2}}}\\\\&\left({\text{or }}\cos ^{2}{\frac {\theta }{2}}={\frac {1+\cos \theta }{2}} ight)\end{aligned}}}
tan ⁡ θ 2 = csc ⁡ θ − cot ⁡ θ = ± 1 − cos ⁡ θ 1 + cos ⁡ θ = sin ⁡ θ 1 + cos ⁡ θ = 1 − cos ⁡ θ sin ⁡ θ tan ⁡ η + θ 2 = sin ⁡ η + sin ⁡ θ cos ⁡ η + cos ⁡ θ tan ⁡ ( θ 2 + π 4 ) = sec ⁡ θ + tan ⁡ θ 1 − sin ⁡ θ 1 + sin ⁡ θ = | 1 − tan ⁡ θ 2 | | 1 + tan ⁡ θ 2 | tan ⁡ θ 2 = tan ⁡ θ 1 + 1 + tan 2 ⁡ θ for θ ∈ ( − π 2 , π 2 ) {\displaystyle {\begin{aligned}\tan {\frac {\theta }{2}}&=\csc \theta -\cot \theta \\&=\pm \,{\sqrt {\frac {1-\cos \theta }{1+\cos \theta }}}\\[3pt]&={\frac {\sin \theta }{1+\cos \theta }}\\[3pt]&={\frac {1-\cos \theta }{\sin \theta }}\\[5pt]\tan {\frac {\eta +\theta }{2}}&={\frac {\sin \eta +\sin \theta }{\cos \eta +\cos \theta }}\\[5pt]\tan \left({\frac {\theta }{2}}+{\frac {\pi }{4}} ight)&=\sec \theta +\tan \theta \\[5pt]{\sqrt {\frac {1-\sin \theta }{1+\sin \theta }}}&={\frac {\left|1-\tan {\frac {\theta }{2}} ight|}{\left|1+\tan {\frac {\theta }{2}} ight|}}\\[5pt]\tan {\frac {\theta }{2}}&={\frac {\tan \theta }{1+{\sqrt {1+\tan ^{2}\theta }}}}\\&{\text{for }}\theta \in \left(-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}} ight)\end{aligned}}}
cot ⁡ θ 2 = csc ⁡ θ + cot ⁡ θ = ± 1 + cos ⁡ θ 1 − cos ⁡ θ = sin ⁡ θ 1 − cos ⁡ θ = 1 + cos ⁡ θ sin ⁡ θ {\displaystyle {\begin{aligned}\cot {\frac {\theta }{2}}&=\csc \theta +\cot \theta \\&=\pm \,{\sqrt {\frac {1+\cos \theta }{1-\cos \theta }}}\\[3pt]&={\frac {\sin \theta }{1-\cos \theta }}\\[4pt]&={\frac {1+\cos \theta }{\sin \theta }}\end{aligned}}}
sin 2 ⁡ θ = 1 − cos ⁡ ( 2 θ ) 2 {\displaystyle \sin ^{2}\theta ={\frac {1-\cos(2\theta )}{2}}}
sin 2 ⁡ θ = 1 − cos ⁡ ( 2 θ ) 2 {\displaystyle \sin ^{2}\theta ={\frac {1-\cos(2\theta )}{2}}}
Sine
sin 2 ⁡ θ = 1 − cos ⁡ ( 2 θ ) 2 {\displaystyle \sin ^{2}\theta ={\frac {1-\cos(2\theta )}{2}}}
Cosine
cos 2 ⁡ θ = 1 + cos ⁡ ( 2 θ ) 2 {\displaystyle \cos ^{2}\theta ={\frac {1+\cos(2\theta )}{2}}}
Other
sin 2 ⁡ θ cos 2 ⁡ θ = 1 − cos ⁡ ( 4 θ ) 8 {\displaystyle \sin ^{2}\theta \cos ^{2}\theta ={\frac {1-\cos(4\theta )}{8}}}
sin 3 ⁡ θ = 3 sin ⁡ θ − sin ⁡ ( 3 θ ) 4 {\displaystyle \sin ^{3}\theta ={\frac {3\sin \theta -\sin(3\theta )}{4}}}
sin 3 ⁡ θ = 3 sin ⁡ θ − sin ⁡ ( 3 θ ) 4 {\displaystyle \sin ^{3}\theta ={\frac {3\sin \theta -\sin(3\theta )}{4}}}
Sine
sin 3 ⁡ θ = 3 sin ⁡ θ − sin ⁡ ( 3 θ ) 4 {\displaystyle \sin ^{3}\theta ={\frac {3\sin \theta -\sin(3\theta )}{4}}}
Cosine
cos 3 ⁡ θ = 3 cos ⁡ θ + cos ⁡ ( 3 θ ) 4 {\displaystyle \cos ^{3}\theta ={\frac {3\cos \theta +\cos(3\theta )}{4}}}
Other
sin 3 ⁡ θ cos 3 ⁡ θ = 3 sin ⁡ ( 2 θ ) − sin ⁡ ( 6 θ ) 32 {\displaystyle \sin ^{3}\theta \cos ^{3}\theta ={\frac {3\sin(2\theta )-\sin(6\theta )}{32}}}
sin 4 ⁡ θ = 3 − 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 {\displaystyle \sin ^{4}\theta ={\frac {3-4\cos(2\theta )+\cos(4\theta )}{8}}}
sin 4 ⁡ θ = 3 − 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 {\displaystyle \sin ^{4}\theta ={\frac {3-4\cos(2\theta )+\cos(4\theta )}{8}}}
Sine
sin 4 ⁡ θ = 3 − 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 {\displaystyle \sin ^{4}\theta ={\frac {3-4\cos(2\theta )+\cos(4\theta )}{8}}}
Cosine
cos 4 ⁡ θ = 3 + 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 {\displaystyle \cos ^{4}\theta ={\frac {3+4\cos(2\theta )+\cos(4\theta )}{8}}}
Other
sin 4 ⁡ θ cos 4 ⁡ θ = 3 − 4 cos ⁡ ( 4 θ ) + cos ⁡ ( 8 θ ) 128 {\displaystyle \sin ^{4}\theta \cos ^{4}\theta ={\frac {3-4\cos(4\theta )+\cos(8\theta )}{128}}}
sin 5 ⁡ θ = 10 sin ⁡ θ − 5 sin ⁡ ( 3 θ ) + sin ⁡ ( 5 θ ) 16 {\displaystyle \sin ^{5}\theta ={\frac {10\sin \theta -5\sin(3\theta )+\sin(5\theta )}{16}}}
sin 5 ⁡ θ = 10 sin ⁡ θ − 5 sin ⁡ ( 3 θ ) + sin ⁡ ( 5 θ ) 16 {\displaystyle \sin ^{5}\theta ={\frac {10\sin \theta -5\sin(3\theta )+\sin(5\theta )}{16}}}
Sine
sin 5 ⁡ θ = 10 sin ⁡ θ − 5 sin ⁡ ( 3 θ ) + sin ⁡ ( 5 θ ) 16 {\displaystyle \sin ^{5}\theta ={\frac {10\sin \theta -5\sin(3\theta )+\sin(5\theta )}{16}}}
Cosine
cos 5 ⁡ θ = 10 cos ⁡ θ + 5 cos ⁡ ( 3 θ ) + cos ⁡ ( 5 θ ) 16 {\displaystyle \cos ^{5}\theta ={\frac {10\cos \theta +5\cos(3\theta )+\cos(5\theta )}{16}}}
Other
sin 5 ⁡ θ cos 5 ⁡ θ = 10 sin ⁡ ( 2 θ ) − 5 sin ⁡ ( 6 θ ) + sin ⁡ ( 10 θ ) 512 {\displaystyle \sin ^{5}\theta \cos ^{5}\theta ={\frac {10\sin(2\theta )-5\sin(6\theta )+\sin(10\theta )}{512}}}
Sine
Cosine
Other
sin 2 ⁡ θ = 1 − cos ⁡ ( 2 θ ) 2 {\displaystyle \sin ^{2}\theta ={\frac {1-\cos(2\theta )}{2}}}
cos 2 ⁡ θ = 1 + cos ⁡ ( 2 θ ) 2 {\displaystyle \cos ^{2}\theta ={\frac {1+\cos(2\theta )}{2}}}
sin 2 ⁡ θ cos 2 ⁡ θ = 1 − cos ⁡ ( 4 θ ) 8 {\displaystyle \sin ^{2}\theta \cos ^{2}\theta ={\frac {1-\cos(4\theta )}{8}}}
sin 3 ⁡ θ = 3 sin ⁡ θ − sin ⁡ ( 3 θ ) 4 {\displaystyle \sin ^{3}\theta ={\frac {3\sin \theta -\sin(3\theta )}{4}}}
cos 3 ⁡ θ = 3 cos ⁡ θ + cos ⁡ ( 3 θ ) 4 {\displaystyle \cos ^{3}\theta ={\frac {3\cos \theta +\cos(3\theta )}{4}}}
sin 3 ⁡ θ cos 3 ⁡ θ = 3 sin ⁡ ( 2 θ ) − sin ⁡ ( 6 θ ) 32 {\displaystyle \sin ^{3}\theta \cos ^{3}\theta ={\frac {3\sin(2\theta )-\sin(6\theta )}{32}}}
sin 4 ⁡ θ = 3 − 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 {\displaystyle \sin ^{4}\theta ={\frac {3-4\cos(2\theta )+\cos(4\theta )}{8}}}
cos 4 ⁡ θ = 3 + 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) 8 {\displaystyle \cos ^{4}\theta ={\frac {3+4\cos(2\theta )+\cos(4\theta )}{8}}}
sin 4 ⁡ θ cos 4 ⁡ θ = 3 − 4 cos ⁡ ( 4 θ ) + cos ⁡ ( 8 θ ) 128 {\displaystyle \sin ^{4}\theta \cos ^{4}\theta ={\frac {3-4\cos(4\theta )+\cos(8\theta )}{128}}}
sin 5 ⁡ θ = 10 sin ⁡ θ − 5 sin ⁡ ( 3 θ ) + sin ⁡ ( 5 θ ) 16 {\displaystyle \sin ^{5}\theta ={\frac {10\sin \theta -5\sin(3\theta )+\sin(5\theta )}{16}}}
cos 5 ⁡ θ = 10 cos ⁡ θ + 5 cos ⁡ ( 3 θ ) + cos ⁡ ( 5 θ ) 16 {\displaystyle \cos ^{5}\theta ={\frac {10\cos \theta +5\cos(3\theta )+\cos(5\theta )}{16}}}
sin 5 ⁡ θ cos 5 ⁡ θ = 10 sin ⁡ ( 2 θ ) − 5 sin ⁡ ( 6 θ ) + sin ⁡ ( 10 θ ) 512 {\displaystyle \sin ^{5}\theta \cos ^{5}\theta ={\frac {10\sin(2\theta )-5\sin(6\theta )+\sin(10\theta )}{512}}}
· Power-reduction formulae
n is odd
n is odd
if n is ...
n is odd
cos n ⁡ θ {\displaystyle \cos ^{n}\theta }
cos n ⁡ θ = 2 2 n ∑ k = 0 n − 1 2 ( n k ) cos ⁡ ( ( n − 2 k ) θ ) {\displaystyle \cos ^{n}\theta ={\frac {2}{2^{n}}}\sum _{k=0}^{\frac {n-1}{2}}{\binom {n}{k}}\cos {{\big (}(n-2k)\theta {\big )}}}
sin n ⁡ θ {\displaystyle \sin ^{n}\theta }
sin n ⁡ θ = 2 2 n ∑ k = 0 n − 1 2 ( − 1 ) ( n − 1 2 − k ) ( n k ) sin ⁡ ( ( n − 2 k ) θ ) {\displaystyle \sin ^{n}\theta ={\frac {2}{2^{n}}}\sum _{k=0}^{\frac {n-1}{2}}(-1)^{\left({\frac {n-1}{2}}-k\right)}{\binom {n}{k}}\sin {{\big (}(n-2k)\theta {\big )}}}
n is even
n is even
if n is ...
n is even
cos n ⁡ θ {\displaystyle \cos ^{n}\theta }
cos n ⁡ θ = 1 2 n ( n n 2 ) + 2 2 n ∑ k = 0 n 2 − 1 ( n k ) cos ⁡ ( ( n − 2 k ) θ ) {\displaystyle \cos ^{n}\theta ={\frac {1}{2^{n}}}{\binom {n}{\frac {n}{2}}}+{\frac {2}{2^{n}}}\sum _{k=0}^{{\frac {n}{2}}-1}{\binom {n}{k}}\cos {{\big (}(n-2k)\theta {\big )}}}
sin n ⁡ θ {\displaystyle \sin ^{n}\theta }
sin n ⁡ θ = 1 2 n ( n n 2 ) + 2 2 n ∑ k = 0 n 2 − 1 ( − 1 ) ( n 2 − k ) ( n k ) cos ⁡ ( ( n − 2 k ) θ ) {\displaystyle \sin ^{n}\theta ={\frac {1}{2^{n}}}{\binom {n}{\frac {n}{2}}}+{\frac {2}{2^{n}}}\sum _{k=0}^{{\frac {n}{2}}-1}(-1)^{\left({\frac {n}{2}}-k\right)}{\binom {n}{k}}\cos {{\big (}(n-2k)\theta {\big )}}}
if n is ...
cos n ⁡ θ {\displaystyle \cos ^{n}\theta }
sin n ⁡ θ {\displaystyle \sin ^{n}\theta }
n is odd
cos n ⁡ θ = 2 2 n ∑ k = 0 n − 1 2 ( n k ) cos ⁡ ( ( n − 2 k ) θ ) {\displaystyle \cos ^{n}\theta ={\frac {2}{2^{n}}}\sum _{k=0}^{\frac {n-1}{2}}{\binom {n}{k}}\cos {{\big (}(n-2k)\theta {\big )}}}
sin n ⁡ θ = 2 2 n ∑ k = 0 n − 1 2 ( − 1 ) ( n − 1 2 − k ) ( n k ) sin ⁡ ( ( n − 2 k ) θ ) {\displaystyle \sin ^{n}\theta ={\frac {2}{2^{n}}}\sum _{k=0}^{\frac {n-1}{2}}(-1)^{\left({\frac {n-1}{2}}-k ight)}{\binom {n}{k}}\sin {{\big (}(n-2k)\theta {\big )}}}
n is even
cos n ⁡ θ = 1 2 n ( n n 2 ) + 2 2 n ∑ k = 0 n 2 − 1 ( n k ) cos ⁡ ( ( n − 2 k ) θ ) {\displaystyle \cos ^{n}\theta ={\frac {1}{2^{n}}}{\binom {n}{\frac {n}{2}}}+{\frac {2}{2^{n}}}\sum _{k=0}^{{\frac {n}{2}}-1}{\binom {n}{k}}\cos {{\big (}(n-2k)\theta {\big )}}}
sin n ⁡ θ = 1 2 n ( n n 2 ) + 2 2 n ∑ k = 0 n 2 − 1 ( − 1 ) ( n 2 − k ) ( n k ) cos ⁡ ( ( n − 2 k ) θ ) {\displaystyle \sin ^{n}\theta ={\frac {1}{2^{n}}}{\binom {n}{\frac {n}{2}}}+{\frac {2}{2^{n}}}\sum _{k=0}^{{\frac {n}{2}}-1}(-1)^{\left({\frac {n}{2}}-k ight)}{\binom {n}{k}}\cos {{\big (}(n-2k)\theta {\big )}}}
· Relation to the complex exponential function
sin ⁡ θ = e i θ − e − i θ 2 i {\displaystyle \sin \theta ={\frac {e^{i\theta }-e^{-i\theta }}{2i}}}
sin ⁡ θ = e i θ − e − i θ 2 i {\displaystyle \sin \theta ={\frac {e^{i\theta }-e^{-i\theta }}{2i}}}
Function
sin ⁡ θ = e i θ − e − i θ 2 i {\displaystyle \sin \theta ={\frac {e^{i\theta }-e^{-i\theta }}{2i}}}
Inverse function
arcsin ⁡ x = − i ln ⁡ ( i x + 1 − x 2 ) {\displaystyle \arcsin x=-i\,\ln \left(ix+{\sqrt {1-x^{2}}}\right)}
cos ⁡ θ = e i θ + e − i θ 2 {\displaystyle \cos \theta ={\frac {e^{i\theta }+e^{-i\theta }}{2}}}
cos ⁡ θ = e i θ + e − i θ 2 {\displaystyle \cos \theta ={\frac {e^{i\theta }+e^{-i\theta }}{2}}}
Function
cos ⁡ θ = e i θ + e − i θ 2 {\displaystyle \cos \theta ={\frac {e^{i\theta }+e^{-i\theta }}{2}}}
Inverse function
arccos ⁡ x = − i ln ⁡ ( x + x 2 − 1 ) {\displaystyle \arccos x=-i\ln \left(x+{\sqrt {x^{2}-1}}\right)}
tan ⁡ θ = − i e i θ − e − i θ e i θ + e − i θ {\displaystyle \tan \theta =-i\,{\frac {e^{i\theta }-e^{-i\theta }}{e^{i\theta }+e^{-i\theta }}}}
tan ⁡ θ = − i e i θ − e − i θ e i θ + e − i θ {\displaystyle \tan \theta =-i\,{\frac {e^{i\theta }-e^{-i\theta }}{e^{i\theta }+e^{-i\theta }}}}
Function
tan ⁡ θ = − i e i θ − e − i θ e i θ + e − i θ {\displaystyle \tan \theta =-i\,{\frac {e^{i\theta }-e^{-i\theta }}{e^{i\theta }+e^{-i\theta }}}}
Inverse function
arctan ⁡ x = i 2 ln ⁡ ( i + x i − x ) {\displaystyle \arctan x={\frac {i}{2}}\ln \left({\frac {i+x}{i-x}}\right)}
csc ⁡ θ = 2 i e i θ − e − i θ {\displaystyle \csc \theta ={\frac {2i}{e^{i\theta }-e^{-i\theta }}}}
csc ⁡ θ = 2 i e i θ − e − i θ {\displaystyle \csc \theta ={\frac {2i}{e^{i\theta }-e^{-i\theta }}}}
Function
csc ⁡ θ = 2 i e i θ − e − i θ {\displaystyle \csc \theta ={\frac {2i}{e^{i\theta }-e^{-i\theta }}}}
Inverse function
arccsc ⁡ x = − i ln ⁡ ( i x + 1 − 1 x 2 ) {\displaystyle \operatorname {arccsc} x=-i\,\ln \left({\frac {i}{x}}+{\sqrt {1-{\frac {1}{x^{2}}}}}\right)}
sec ⁡ θ = 2 e i θ + e − i θ {\displaystyle \sec \theta ={\frac {2}{e^{i\theta }+e^{-i\theta }}}}
sec ⁡ θ = 2 e i θ + e − i θ {\displaystyle \sec \theta ={\frac {2}{e^{i\theta }+e^{-i\theta }}}}
Function
sec ⁡ θ = 2 e i θ + e − i θ {\displaystyle \sec \theta ={\frac {2}{e^{i\theta }+e^{-i\theta }}}}
Inverse function
arcsec ⁡ x = − i ln ⁡ ( 1 x + i 1 − 1 x 2 ) {\displaystyle \operatorname {arcsec} x=-i\,\ln \left({\frac {1}{x}}+i{\sqrt {1-{\frac {1}{x^{2}}}}}\right)}
cot ⁡ θ = i e i θ + e − i θ e i θ − e − i θ {\displaystyle \cot \theta =i\,{\frac {e^{i\theta }+e^{-i\theta }}{e^{i\theta }-e^{-i\theta }}}}
cot ⁡ θ = i e i θ + e − i θ e i θ − e − i θ {\displaystyle \cot \theta =i\,{\frac {e^{i\theta }+e^{-i\theta }}{e^{i\theta }-e^{-i\theta }}}}
Function
cot ⁡ θ = i e i θ + e − i θ e i θ − e − i θ {\displaystyle \cot \theta =i\,{\frac {e^{i\theta }+e^{-i\theta }}{e^{i\theta }-e^{-i\theta }}}}
Inverse function
arccot ⁡ x = i 2 ln ⁡ ( x − i x + i ) {\displaystyle \operatorname {arccot} x={\frac {i}{2}}\ln \left({\frac {x-i}{x+i}}\right)}
cis ⁡ θ = e i θ {\displaystyle \operatorname {cis} \theta =e^{i\theta }}
cis ⁡ θ = e i θ {\displaystyle \operatorname {cis} \theta =e^{i\theta }}
Function
cis ⁡ θ = e i θ {\displaystyle \operatorname {cis} \theta =e^{i\theta }}
Inverse function
arccis ⁡ x = − i ln ⁡ x {\displaystyle \operatorname {arccis} x=-i\ln x}
Function
Inverse function
sin ⁡ θ = e i θ − e − i θ 2 -e^{-i\theta }}{2i}}}
arcsin ⁡ x = − i ln ⁡ ( i x + 1 − x 2 ) {\displaystyle \arcsin x=-i\,\ln \left(ix+{\sqrt {1-x^{2}}} ight)}
cos ⁡ θ = e i θ + e − i θ 2 {\displaystyle \cos \theta ={\frac {e^{i\theta }+e^{-i\theta }}{2}}}
arccos ⁡ x = − i ln ⁡ ( x + x 2 − 1 ) {\displaystyle \arccos x=-i\ln \left(x+{\sqrt {x^{2}-1}} ight)}
tan ⁡ θ = − i e i θ − e − i θ e i θ + e − i θ {\displaystyle \tan \theta =-i\,{\frac {e^{i\theta }-e^{-i\theta }}{e^{i\theta }+e^{-i\theta }}}}
arctan ⁡ x = i 2 ln ⁡ ( i + x i − x ) {\displaystyle \arctan x={\frac {i}{2}}\ln \left({\frac {i+x}{i-x}} ight)}
csc ⁡ θ = 2 i e i θ − e − i θ {\displaystyle \csc \theta ={\frac {2i}{e^{i\theta }-e^{-i\theta }}}}
arccsc ⁡ x = − i ln ⁡ ( i x + 1 − 1 x 2 ) {\displaystyle \operatorname {arccsc} x=-i\,\ln \left({\frac {i}{x}}+{\sqrt {1-{\frac {1}{x^{2}}}}} ight)}
sec ⁡ θ = 2 e i θ + e − i θ {\displaystyle \sec \theta ={\frac {2}{e^{i\theta }+e^{-i\theta }}}}
arcsec ⁡ x = − i ln ⁡ ( 1 x + i 1 − 1 x 2 ) {\displaystyle \operatorname {arcsec} x=-i\,\ln \left({\frac {1}{x}}+i{\sqrt {1-{\frac {1}{x^{2}}}}} ight)}
cot ⁡ θ = i e i θ + e − i θ e i θ − e − i θ {\displaystyle \cot \theta =i\,{\frac {e^{i\theta }+e^{-i\theta }}{e^{i\theta }-e^{-i\theta }}}}
arccot ⁡ x = i 2 ln ⁡ ( x − i x + i ) {\displaystyle \operatorname {arccot} x={\frac {i}{2}}\ln \left({\frac {x-i}{x+i}} ight)}
cis ⁡ θ = e i θ {\displaystyle \operatorname {cis} \theta =e^{i\theta }}
arccis ⁡ x = − i ln ⁡ x=-i\ln x}

References

  1. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
    http://www.math.ubc.ca/~cbm/aands/page_73.htm
  2. Selby 1970, p. 188
  3. Abramowitz and Stegun, p. 72, 4.3.13–15
  4. Abramowitz and Stegun, p. 72, 4.3.7–9
  5. Abramowitz and Stegun, p. 72, 4.3.16
  6. MathWorld
    https://mathworld.wolfram.com/TrigonometricAdditionFormulas.html
  7. Abramowitz and Stegun, p. 72, 4.3.17
  8. Abramowitz and Stegun, p. 72, 4.3.18
  9. www.milefoot.com
    http://www.milefoot.com/math/trig/22anglesumidentities.htm
  10. Abramowitz and Stegun, p. 72, 4.3.19
  11. Abramowitz and Stegun, p. 80, 4.4.32
  12. Abramowitz and Stegun, p. 80, 4.4.33
  13. Abramowitz and Stegun, p. 80, 4.4.34
  14. Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation
    https://doi.org/10.1145%2F74540.74566
  15. Michael Hardy. (2016). "On Tangents and Secants of Infinite Sums." The American Mathematical Monthly, volume 123, number
    https://doi.org/10.4169/amer.math.monthly.123.7.701
  16. Michael Hardy (2025), "Invariance of the Cauchy Family Under Linear Fractional Transformations," The American Mathematic
    https://doi.org/10.1080/00029890.2025.2459048
  17. Knight F. B., "A characterization of the Cauchy type." Proceedings of the American Mathematical Society, 1976:130–135.
  18. American Mathematical Monthly
    https://zenodo.org/record/1000408
  19. "Sine, Cosine, and Ptolemy's Theorem"
    https://www.cut-the-knot.org/proofs/sine_cosine.shtml
  20. MathWorld
    https://mathworld.wolfram.com/Multiple-AngleFormulas.html
  21. Abramowitz and Stegun, p. 74, 4.3.48
  22. Selby 1970, pg. 190
  23. mathworld.wolfram.com
    https://mathworld.wolfram.com/Multiple-AngleFormulas.html
  24. Ken Ward's Mathematics Pages
    http://trans4mind.com/personal_development/mathematics/trigonometry/multipleAnglesRecursiveFormula.htm
  25. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
    http://www.math.ubc.ca/~cbm/aands/page_72.htm
  26. MathWorld
    https://mathworld.wolfram.com/Half-AngleFormulas.html
  27. Abramowitz and Stegun, p. 72, 4.3.24–26
  28. MathWorld
    https://mathworld.wolfram.com/Double-AngleFormulas.html
  29. Abramowitz and Stegun, p. 72, 4.3.27–28
  30. Abramowitz and Stegun, p. 72, 4.3.31–33
  31. An introduction to the history of mathematics
    https://search.worldcat.org/oclc/20842510
  32. Abramowitz and Stegun, p. 72, 4.3.34–39
  33. American Mathematical Monthly
    https://doi.org/10.4169%2F000298910x480784
  34. "Product Identity Multiple Angle"
    https://math.stackexchange.com/q/2095330
  35. Apostol, T.M. (1967) Calculus. 2nd edition. New York, NY, Wiley. Pp 334-335.
  36. MathWorld
    https://mathworld.wolfram.com/HarmonicAdditionTheorem.html
  37. American Journal of Physics
    https://ui.adsabs.harvard.edu/abs/1953AmJPh..21..140M
  38. Ordinary and Partial Differential Equations: With Special Functions, Fourier Series, and Boundary Value Problems
    https://books.google.com/books?id=jWvAfcNnphIC
  39. Handbook of Mathematical Formulas and Integrals
  40. International Journal of Mathematical Education in Science and Technology
    https://dx.doi.org/10.1080/00207390117151
  41. Abramowitz and Stegun, p. 74, 4.3.47
  42. Abramowitz and Stegun, p. 71, 4.3.2
  43. Abramowitz and Stegun, p. 71, 4.3.1
  44. Abramowitz and Stegun, p. 80, 4.4.26–31
  45. Complex Numbers and Elementary Complex Functions
    https://archive.org/details/isbn_356025055/mode/2up
  46. The Remarkable Sine Function
    https://archive.org/details/markushevich-the-remarkable-sine-functions
  47. Abramowitz and Stegun, p. 74, 4.3.65–66
  48. Abramowitz and Stegun, p. 75, 4.3.89–90
  49. Abramowitz and Stegun, p. 85, 4.5.68–69
  50. Abramowitz & Stegun 1972, p. 73, 4.3.45
  51. Wu, Rex H. "Proof Without Words: Euler's Arctangent Identity", Mathematics Magazine 77(3), June 2004, p. 189.
  52. Mathematics
    https://arxiv.org/abs/2107.01027
  53. Mathematical Gazette
    https://doi.org/10.1017%2Fs0025557200176223
  54. MathWorld
    https://mathworld.wolfram.com/Sine.html
  55. Harris, Edward M. "Sums of Arctangents", in Roger B. Nelson, Proofs Without Words (1993, Mathematical Association of Ame
  56. Milton Abramowitz and Irene Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, D
  57. Er. K. C. Joshi, Krishna's IIT MATHEMATIKA. Krishna Prakashan Media. Meerut, India. page 636.
  58. Cagnoli, Antonio (1808), Trigonométrie rectiligne et sphérique, p. 27.
  59. Abramowitz and Stegun, p. 72, 4.3.23
Image
Source:
Tip: Wheel or +/− to zoom, drag to pan, Esc to close.