List of prime numbers
Updated: 11/6/2025, 2:12:51 AM Wikipedia source
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes. The first 1,000 primes are listed below, followed by lists of notable types of prime numbers in alphabetical order, giving their respective first terms. The number 1 is neither prime nor composite.
Tables
· The first 1,000 prime numbers
1–20
1–20
Col 1
1–20
1
2
2
3
3
5
4
7
5
11
6
13
7
17
8
19
9
23
10
29
11
31
12
37
13
41
14
43
15
47
16
53
17
59
18
61
19
67
20
71
21–40
21–40
Col 1
21–40
1
73
2
79
3
83
4
89
5
97
6
101
7
103
8
107
9
109
10
113
11
127
12
131
13
137
14
139
15
149
16
151
17
157
18
163
19
167
20
173
41–60
41–60
Col 1
41–60
1
179
2
181
3
191
4
193
5
197
6
199
7
211
8
223
9
227
10
229
11
233
12
239
13
241
14
251
15
257
16
263
17
269
18
271
19
277
20
281
61–80
61–80
Col 1
61–80
1
283
2
293
3
307
4
311
5
313
6
317
7
331
8
337
9
347
10
349
11
353
12
359
13
367
14
373
15
379
16
383
17
389
18
397
19
401
20
409
81–100
81–100
Col 1
81–100
1
419
2
421
3
431
4
433
5
439
6
443
7
449
8
457
9
461
10
463
11
467
12
479
13
487
14
491
15
499
16
503
17
509
18
521
19
523
20
541
101–120
101–120
Col 1
101–120
1
547
2
557
3
563
4
569
5
571
6
577
7
587
8
593
9
599
10
601
11
607
12
613
13
617
14
619
15
631
16
641
17
643
18
647
19
653
20
659
121–140
121–140
Col 1
121–140
1
661
2
673
3
677
4
683
5
691
6
701
7
709
8
719
9
727
10
733
11
739
12
743
13
751
14
757
15
761
16
769
17
773
18
787
19
797
20
809
141–160
141–160
Col 1
141–160
1
811
2
821
3
823
4
827
5
829
6
839
7
853
8
857
9
859
10
863
11
877
12
881
13
883
14
887
15
907
16
911
17
919
18
929
19
937
20
941
161–180
161–180
Col 1
161–180
1
947
2
953
3
967
4
971
5
977
6
983
7
991
8
997
9
1009
10
1013
11
1019
12
1021
13
1031
14
1033
15
1039
16
1049
17
1051
18
1061
19
1063
20
1069
181–200
181–200
Col 1
181–200
1
1087
2
1091
3
1093
4
1097
5
1103
6
1109
7
1117
8
1123
9
1129
10
1151
11
1153
12
1163
13
1171
14
1181
15
1187
16
1193
17
1201
18
1213
19
1217
20
1223
201–220
201–220
Col 1
201–220
1
1229
2
1231
3
1237
4
1249
5
1259
6
1277
7
1279
8
1283
9
1289
10
1291
11
1297
12
1301
13
1303
14
1307
15
1319
16
1321
17
1327
18
1361
19
1367
20
1373
221–240
221–240
Col 1
221–240
1
1381
2
1399
3
1409
4
1423
5
1427
6
1429
7
1433
8
1439
9
1447
10
1451
11
1453
12
1459
13
1471
14
1481
15
1483
16
1487
17
1489
18
1493
19
1499
20
1511
241–260
241–260
Col 1
241–260
1
1523
2
1531
3
1543
4
1549
5
1553
6
1559
7
1567
8
1571
9
1579
10
1583
11
1597
12
1601
13
1607
14
1609
15
1613
16
1619
17
1621
18
1627
19
1637
20
1657
261–280
261–280
Col 1
261–280
1
1663
2
1667
3
1669
4
1693
5
1697
6
1699
7
1709
8
1721
9
1723
10
1733
11
1741
12
1747
13
1753
14
1759
15
1777
16
1783
17
1787
18
1789
19
1801
20
1811
281–300
281–300
Col 1
281–300
1
1823
2
1831
3
1847
4
1861
5
1867
6
1871
7
1873
8
1877
9
1879
10
1889
11
1901
12
1907
13
1913
14
1931
15
1933
16
1949
17
1951
18
1973
19
1979
20
1987
301–320
301–320
Col 1
301–320
1
1993
2
1997
3
1999
4
2003
5
2011
6
2017
7
2027
8
2029
9
2039
10
2053
11
2063
12
2069
13
2081
14
2083
15
2087
16
2089
17
2099
18
2111
19
2113
20
2129
321–340
321–340
Col 1
321–340
1
2131
2
2137
3
2141
4
2143
5
2153
6
2161
7
2179
8
2203
9
2207
10
2213
11
2221
12
2237
13
2239
14
2243
15
2251
16
2267
17
2269
18
2273
19
2281
20
2287
341–360
341–360
Col 1
341–360
1
2293
2
2297
3
2309
4
2311
5
2333
6
2339
7
2341
8
2347
9
2351
10
2357
11
2371
12
2377
13
2381
14
2383
15
2389
16
2393
17
2399
18
2411
19
2417
20
2423
361–380
361–380
Col 1
361–380
1
2437
2
2441
3
2447
4
2459
5
2467
6
2473
7
2477
8
2503
9
2521
10
2531
11
2539
12
2543
13
2549
14
2551
15
2557
16
2579
17
2591
18
2593
19
2609
20
2617
381–400
381–400
Col 1
381–400
1
2621
2
2633
3
2647
4
2657
5
2659
6
2663
7
2671
8
2677
9
2683
10
2687
11
2689
12
2693
13
2699
14
2707
15
2711
16
2713
17
2719
18
2729
19
2731
20
2741
401–420
401–420
Col 1
401–420
1
2749
2
2753
3
2767
4
2777
5
2789
6
2791
7
2797
8
2801
9
2803
10
2819
11
2833
12
2837
13
2843
14
2851
15
2857
16
2861
17
2879
18
2887
19
2897
20
2903
421–440
421–440
Col 1
421–440
1
2909
2
2917
3
2927
4
2939
5
2953
6
2957
7
2963
8
2969
9
2971
10
2999
11
3001
12
3011
13
3019
14
3023
15
3037
16
3041
17
3049
18
3061
19
3067
20
3079
441–460
441–460
Col 1
441–460
1
3083
2
3089
3
3109
4
3119
5
3121
6
3137
7
3163
8
3167
9
3169
10
3181
11
3187
12
3191
13
3203
14
3209
15
3217
16
3221
17
3229
18
3251
19
3253
20
3257
461–480
461–480
Col 1
461–480
1
3259
2
3271
3
3299
4
3301
5
3307
6
3313
7
3319
8
3323
9
3329
10
3331
11
3343
12
3347
13
3359
14
3361
15
3371
16
3373
17
3389
18
3391
19
3407
20
3413
481–500
481–500
Col 1
481–500
1
3433
2
3449
3
3457
4
3461
5
3463
6
3467
7
3469
8
3491
9
3499
10
3511
11
3517
12
3527
13
3529
14
3533
15
3539
16
3541
17
3547
18
3557
19
3559
20
3571
501–520
501–520
Col 1
501–520
1
3581
2
3583
3
3593
4
3607
5
3613
6
3617
7
3623
8
3631
9
3637
10
3643
11
3659
12
3671
13
3673
14
3677
15
3691
16
3697
17
3701
18
3709
19
3719
20
3727
521–540
521–540
Col 1
521–540
1
3733
2
3739
3
3761
4
3767
5
3769
6
3779
7
3793
8
3797
9
3803
10
3821
11
3823
12
3833
13
3847
14
3851
15
3853
16
3863
17
3877
18
3881
19
3889
20
3907
541–560
541–560
Col 1
541–560
1
3911
2
3917
3
3919
4
3923
5
3929
6
3931
7
3943
8
3947
9
3967
10
3989
11
4001
12
4003
13
4007
14
4013
15
4019
16
4021
17
4027
18
4049
19
4051
20
4057
561–580
561–580
Col 1
561–580
1
4073
2
4079
3
4091
4
4093
5
4099
6
4111
7
4127
8
4129
9
4133
10
4139
11
4153
12
4157
13
4159
14
4177
15
4201
16
4211
17
4217
18
4219
19
4229
20
4231
581–600
581–600
Col 1
581–600
1
4241
2
4243
3
4253
4
4259
5
4261
6
4271
7
4273
8
4283
9
4289
10
4297
11
4327
12
4337
13
4339
14
4349
15
4357
16
4363
17
4373
18
4391
19
4397
20
4409
601–620
601–620
Col 1
601–620
1
4421
2
4423
3
4441
4
4447
5
4451
6
4457
7
4463
8
4481
9
4483
10
4493
11
4507
12
4513
13
4517
14
4519
15
4523
16
4547
17
4549
18
4561
19
4567
20
4583
621–640
621–640
Col 1
621–640
1
4591
2
4597
3
4603
4
4621
5
4637
6
4639
7
4643
8
4649
9
4651
10
4657
11
4663
12
4673
13
4679
14
4691
15
4703
16
4721
17
4723
18
4729
19
4733
20
4751
641–660
641–660
Col 1
641–660
1
4759
2
4783
3
4787
4
4789
5
4793
6
4799
7
4801
8
4813
9
4817
10
4831
11
4861
12
4871
13
4877
14
4889
15
4903
16
4909
17
4919
18
4931
19
4933
20
4937
661–680
661–680
Col 1
661–680
1
4943
2
4951
3
4957
4
4967
5
4969
6
4973
7
4987
8
4993
9
4999
10
5003
11
5009
12
5011
13
5021
14
5023
15
5039
16
5051
17
5059
18
5077
19
5081
20
5087
681–700
681–700
Col 1
681–700
1
5099
2
5101
3
5107
4
5113
5
5119
6
5147
7
5153
8
5167
9
5171
10
5179
11
5189
12
5197
13
5209
14
5227
15
5231
16
5233
17
5237
18
5261
19
5273
20
5279
701–720
701–720
Col 1
701–720
1
5281
2
5297
3
5303
4
5309
5
5323
6
5333
7
5347
8
5351
9
5381
10
5387
11
5393
12
5399
13
5407
14
5413
15
5417
16
5419
17
5431
18
5437
19
5441
20
5443
721–740
721–740
Col 1
721–740
1
5449
2
5471
3
5477
4
5479
5
5483
6
5501
7
5503
8
5507
9
5519
10
5521
11
5527
12
5531
13
5557
14
5563
15
5569
16
5573
17
5581
18
5591
19
5623
20
5639
741–760
741–760
Col 1
741–760
1
5641
2
5647
3
5651
4
5653
5
5657
6
5659
7
5669
8
5683
9
5689
10
5693
11
5701
12
5711
13
5717
14
5737
15
5741
16
5743
17
5749
18
5779
19
5783
20
5791
761–780
761–780
Col 1
761–780
1
5801
2
5807
3
5813
4
5821
5
5827
6
5839
7
5843
8
5849
9
5851
10
5857
11
5861
12
5867
13
5869
14
5879
15
5881
16
5897
17
5903
18
5923
19
5927
20
5939
781–800
781–800
Col 1
781–800
1
5953
2
5981
3
5987
4
6007
5
6011
6
6029
7
6037
8
6043
9
6047
10
6053
11
6067
12
6073
13
6079
14
6089
15
6091
16
6101
17
6113
18
6121
19
6131
20
6133
801–820
801–820
Col 1
801–820
1
6143
2
6151
3
6163
4
6173
5
6197
6
6199
7
6203
8
6211
9
6217
10
6221
11
6229
12
6247
13
6257
14
6263
15
6269
16
6271
17
6277
18
6287
19
6299
20
6301
821–840
821–840
Col 1
821–840
1
6311
2
6317
3
6323
4
6329
5
6337
6
6343
7
6353
8
6359
9
6361
10
6367
11
6373
12
6379
13
6389
14
6397
15
6421
16
6427
17
6449
18
6451
19
6469
20
6473
841–860
841–860
Col 1
841–860
1
6481
2
6491
3
6521
4
6529
5
6547
6
6551
7
6553
8
6563
9
6569
10
6571
11
6577
12
6581
13
6599
14
6607
15
6619
16
6637
17
6653
18
6659
19
6661
20
6673
861–880
861–880
Col 1
861–880
1
6679
2
6689
3
6691
4
6701
5
6703
6
6709
7
6719
8
6733
9
6737
10
6761
11
6763
12
6779
13
6781
14
6791
15
6793
16
6803
17
6823
18
6827
19
6829
20
6833
881–900
881–900
Col 1
881–900
1
6841
2
6857
3
6863
4
6869
5
6871
6
6883
7
6899
8
6907
9
6911
10
6917
11
6947
12
6949
13
6959
14
6961
15
6967
16
6971
17
6977
18
6983
19
6991
20
6997
901–920
901–920
Col 1
901–920
1
7001
2
7013
3
7019
4
7027
5
7039
6
7043
7
7057
8
7069
9
7079
10
7103
11
7109
12
7121
13
7127
14
7129
15
7151
16
7159
17
7177
18
7187
19
7193
20
7207
921–940
921–940
Col 1
921–940
1
7211
2
7213
3
7219
4
7229
5
7237
6
7243
7
7247
8
7253
9
7283
10
7297
11
7307
12
7309
13
7321
14
7331
15
7333
16
7349
17
7351
18
7369
19
7393
20
7411
941–960
941–960
Col 1
941–960
1
7417
2
7433
3
7451
4
7457
5
7459
6
7477
7
7481
8
7487
9
7489
10
7499
11
7507
12
7517
13
7523
14
7529
15
7537
16
7541
17
7547
18
7549
19
7559
20
7561
961–980
961–980
Col 1
961–980
1
7573
2
7577
3
7583
4
7589
5
7591
6
7603
7
7607
8
7621
9
7639
10
7643
11
7649
12
7669
13
7673
14
7681
15
7687
16
7691
17
7699
18
7703
19
7717
20
7723
981–1000
981–1000
Col 1
981–1000
1
7727
2
7741
3
7753
4
7757
5
7759
6
7789
7
7793
8
7817
9
7823
10
7829
11
7841
12
7853
13
7867
14
7873
15
7877
16
7879
17
7883
18
7901
19
7907
20
7919
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
| 1–20 | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 |
| 21–40 | 73 | 79 | 83 | 89 | 97 | 101 | 103 | 107 | 109 | 113 | 127 | 131 | 137 | 139 | 149 | 151 | 157 | 163 | 167 | 173 |
| 41–60 | 179 | 181 | 191 | 193 | 197 | 199 | 211 | 223 | 227 | 229 | 233 | 239 | 241 | 251 | 257 | 263 | 269 | 271 | 277 | 281 |
| 61–80 | 283 | 293 | 307 | 311 | 313 | 317 | 331 | 337 | 347 | 349 | 353 | 359 | 367 | 373 | 379 | 383 | 389 | 397 | 401 | 409 |
| 81–100 | 419 | 421 | 431 | 433 | 439 | 443 | 449 | 457 | 461 | 463 | 467 | 479 | 487 | 491 | 499 | 503 | 509 | 521 | 523 | 541 |
| 101–120 | 547 | 557 | 563 | 569 | 571 | 577 | 587 | 593 | 599 | 601 | 607 | 613 | 617 | 619 | 631 | 641 | 643 | 647 | 653 | 659 |
| 121–140 | 661 | 673 | 677 | 683 | 691 | 701 | 709 | 719 | 727 | 733 | 739 | 743 | 751 | 757 | 761 | 769 | 773 | 787 | 797 | 809 |
| 141–160 | 811 | 821 | 823 | 827 | 829 | 839 | 853 | 857 | 859 | 863 | 877 | 881 | 883 | 887 | 907 | 911 | 919 | 929 | 937 | 941 |
| 161–180 | 947 | 953 | 967 | 971 | 977 | 983 | 991 | 997 | 1009 | 1013 | 1019 | 1021 | 1031 | 1033 | 1039 | 1049 | 1051 | 1061 | 1063 | 1069 |
| 181–200 | 1087 | 1091 | 1093 | 1097 | 1103 | 1109 | 1117 | 1123 | 1129 | 1151 | 1153 | 1163 | 1171 | 1181 | 1187 | 1193 | 1201 | 1213 | 1217 | 1223 |
| 201–220 | 1229 | 1231 | 1237 | 1249 | 1259 | 1277 | 1279 | 1283 | 1289 | 1291 | 1297 | 1301 | 1303 | 1307 | 1319 | 1321 | 1327 | 1361 | 1367 | 1373 |
| 221–240 | 1381 | 1399 | 1409 | 1423 | 1427 | 1429 | 1433 | 1439 | 1447 | 1451 | 1453 | 1459 | 1471 | 1481 | 1483 | 1487 | 1489 | 1493 | 1499 | 1511 |
| 241–260 | 1523 | 1531 | 1543 | 1549 | 1553 | 1559 | 1567 | 1571 | 1579 | 1583 | 1597 | 1601 | 1607 | 1609 | 1613 | 1619 | 1621 | 1627 | 1637 | 1657 |
| 261–280 | 1663 | 1667 | 1669 | 1693 | 1697 | 1699 | 1709 | 1721 | 1723 | 1733 | 1741 | 1747 | 1753 | 1759 | 1777 | 1783 | 1787 | 1789 | 1801 | 1811 |
| 281–300 | 1823 | 1831 | 1847 | 1861 | 1867 | 1871 | 1873 | 1877 | 1879 | 1889 | 1901 | 1907 | 1913 | 1931 | 1933 | 1949 | 1951 | 1973 | 1979 | 1987 |
| 301–320 | 1993 | 1997 | 1999 | 2003 | 2011 | 2017 | 2027 | 2029 | 2039 | 2053 | 2063 | 2069 | 2081 | 2083 | 2087 | 2089 | 2099 | 2111 | 2113 | 2129 |
| 321–340 | 2131 | 2137 | 2141 | 2143 | 2153 | 2161 | 2179 | 2203 | 2207 | 2213 | 2221 | 2237 | 2239 | 2243 | 2251 | 2267 | 2269 | 2273 | 2281 | 2287 |
| 341–360 | 2293 | 2297 | 2309 | 2311 | 2333 | 2339 | 2341 | 2347 | 2351 | 2357 | 2371 | 2377 | 2381 | 2383 | 2389 | 2393 | 2399 | 2411 | 2417 | 2423 |
| 361–380 | 2437 | 2441 | 2447 | 2459 | 2467 | 2473 | 2477 | 2503 | 2521 | 2531 | 2539 | 2543 | 2549 | 2551 | 2557 | 2579 | 2591 | 2593 | 2609 | 2617 |
| 381–400 | 2621 | 2633 | 2647 | 2657 | 2659 | 2663 | 2671 | 2677 | 2683 | 2687 | 2689 | 2693 | 2699 | 2707 | 2711 | 2713 | 2719 | 2729 | 2731 | 2741 |
| 401–420 | 2749 | 2753 | 2767 | 2777 | 2789 | 2791 | 2797 | 2801 | 2803 | 2819 | 2833 | 2837 | 2843 | 2851 | 2857 | 2861 | 2879 | 2887 | 2897 | 2903 |
| 421–440 | 2909 | 2917 | 2927 | 2939 | 2953 | 2957 | 2963 | 2969 | 2971 | 2999 | 3001 | 3011 | 3019 | 3023 | 3037 | 3041 | 3049 | 3061 | 3067 | 3079 |
| 441–460 | 3083 | 3089 | 3109 | 3119 | 3121 | 3137 | 3163 | 3167 | 3169 | 3181 | 3187 | 3191 | 3203 | 3209 | 3217 | 3221 | 3229 | 3251 | 3253 | 3257 |
| 461–480 | 3259 | 3271 | 3299 | 3301 | 3307 | 3313 | 3319 | 3323 | 3329 | 3331 | 3343 | 3347 | 3359 | 3361 | 3371 | 3373 | 3389 | 3391 | 3407 | 3413 |
| 481–500 | 3433 | 3449 | 3457 | 3461 | 3463 | 3467 | 3469 | 3491 | 3499 | 3511 | 3517 | 3527 | 3529 | 3533 | 3539 | 3541 | 3547 | 3557 | 3559 | 3571 |
| 501–520 | 3581 | 3583 | 3593 | 3607 | 3613 | 3617 | 3623 | 3631 | 3637 | 3643 | 3659 | 3671 | 3673 | 3677 | 3691 | 3697 | 3701 | 3709 | 3719 | 3727 |
| 521–540 | 3733 | 3739 | 3761 | 3767 | 3769 | 3779 | 3793 | 3797 | 3803 | 3821 | 3823 | 3833 | 3847 | 3851 | 3853 | 3863 | 3877 | 3881 | 3889 | 3907 |
| 541–560 | 3911 | 3917 | 3919 | 3923 | 3929 | 3931 | 3943 | 3947 | 3967 | 3989 | 4001 | 4003 | 4007 | 4013 | 4019 | 4021 | 4027 | 4049 | 4051 | 4057 |
| 561–580 | 4073 | 4079 | 4091 | 4093 | 4099 | 4111 | 4127 | 4129 | 4133 | 4139 | 4153 | 4157 | 4159 | 4177 | 4201 | 4211 | 4217 | 4219 | 4229 | 4231 |
| 581–600 | 4241 | 4243 | 4253 | 4259 | 4261 | 4271 | 4273 | 4283 | 4289 | 4297 | 4327 | 4337 | 4339 | 4349 | 4357 | 4363 | 4373 | 4391 | 4397 | 4409 |
| 601–620 | 4421 | 4423 | 4441 | 4447 | 4451 | 4457 | 4463 | 4481 | 4483 | 4493 | 4507 | 4513 | 4517 | 4519 | 4523 | 4547 | 4549 | 4561 | 4567 | 4583 |
| 621–640 | 4591 | 4597 | 4603 | 4621 | 4637 | 4639 | 4643 | 4649 | 4651 | 4657 | 4663 | 4673 | 4679 | 4691 | 4703 | 4721 | 4723 | 4729 | 4733 | 4751 |
| 641–660 | 4759 | 4783 | 4787 | 4789 | 4793 | 4799 | 4801 | 4813 | 4817 | 4831 | 4861 | 4871 | 4877 | 4889 | 4903 | 4909 | 4919 | 4931 | 4933 | 4937 |
| 661–680 | 4943 | 4951 | 4957 | 4967 | 4969 | 4973 | 4987 | 4993 | 4999 | 5003 | 5009 | 5011 | 5021 | 5023 | 5039 | 5051 | 5059 | 5077 | 5081 | 5087 |
| 681–700 | 5099 | 5101 | 5107 | 5113 | 5119 | 5147 | 5153 | 5167 | 5171 | 5179 | 5189 | 5197 | 5209 | 5227 | 5231 | 5233 | 5237 | 5261 | 5273 | 5279 |
| 701–720 | 5281 | 5297 | 5303 | 5309 | 5323 | 5333 | 5347 | 5351 | 5381 | 5387 | 5393 | 5399 | 5407 | 5413 | 5417 | 5419 | 5431 | 5437 | 5441 | 5443 |
| 721–740 | 5449 | 5471 | 5477 | 5479 | 5483 | 5501 | 5503 | 5507 | 5519 | 5521 | 5527 | 5531 | 5557 | 5563 | 5569 | 5573 | 5581 | 5591 | 5623 | 5639 |
| 741–760 | 5641 | 5647 | 5651 | 5653 | 5657 | 5659 | 5669 | 5683 | 5689 | 5693 | 5701 | 5711 | 5717 | 5737 | 5741 | 5743 | 5749 | 5779 | 5783 | 5791 |
| 761–780 | 5801 | 5807 | 5813 | 5821 | 5827 | 5839 | 5843 | 5849 | 5851 | 5857 | 5861 | 5867 | 5869 | 5879 | 5881 | 5897 | 5903 | 5923 | 5927 | 5939 |
| 781–800 | 5953 | 5981 | 5987 | 6007 | 6011 | 6029 | 6037 | 6043 | 6047 | 6053 | 6067 | 6073 | 6079 | 6089 | 6091 | 6101 | 6113 | 6121 | 6131 | 6133 |
| 801–820 | 6143 | 6151 | 6163 | 6173 | 6197 | 6199 | 6203 | 6211 | 6217 | 6221 | 6229 | 6247 | 6257 | 6263 | 6269 | 6271 | 6277 | 6287 | 6299 | 6301 |
| 821–840 | 6311 | 6317 | 6323 | 6329 | 6337 | 6343 | 6353 | 6359 | 6361 | 6367 | 6373 | 6379 | 6389 | 6397 | 6421 | 6427 | 6449 | 6451 | 6469 | 6473 |
| 841–860 | 6481 | 6491 | 6521 | 6529 | 6547 | 6551 | 6553 | 6563 | 6569 | 6571 | 6577 | 6581 | 6599 | 6607 | 6619 | 6637 | 6653 | 6659 | 6661 | 6673 |
| 861–880 | 6679 | 6689 | 6691 | 6701 | 6703 | 6709 | 6719 | 6733 | 6737 | 6761 | 6763 | 6779 | 6781 | 6791 | 6793 | 6803 | 6823 | 6827 | 6829 | 6833 |
| 881–900 | 6841 | 6857 | 6863 | 6869 | 6871 | 6883 | 6899 | 6907 | 6911 | 6917 | 6947 | 6949 | 6959 | 6961 | 6967 | 6971 | 6977 | 6983 | 6991 | 6997 |
| 901–920 | 7001 | 7013 | 7019 | 7027 | 7039 | 7043 | 7057 | 7069 | 7079 | 7103 | 7109 | 7121 | 7127 | 7129 | 7151 | 7159 | 7177 | 7187 | 7193 | 7207 |
| 921–940 | 7211 | 7213 | 7219 | 7229 | 7237 | 7243 | 7247 | 7253 | 7283 | 7297 | 7307 | 7309 | 7321 | 7331 | 7333 | 7349 | 7351 | 7369 | 7393 | 7411 |
| 941–960 | 7417 | 7433 | 7451 | 7457 | 7459 | 7477 | 7481 | 7487 | 7489 | 7499 | 7507 | 7517 | 7523 | 7529 | 7537 | 7541 | 7547 | 7549 | 7559 | 7561 |
| 961–980 | 7573 | 7577 | 7583 | 7589 | 7591 | 7603 | 7607 | 7621 | 7639 | 7643 | 7649 | 7669 | 7673 | 7681 | 7687 | 7691 | 7699 | 7703 | 7717 | 7723 |
References
- List of prime numbers from 1 to 10,006,721https://openlibrary.org/books/OL16553580M
- Tomás Oliveira e Silva, Goldbach conjecture verification Archived 24 May 2011 at the Wayback Machine. Retrieved 16 Julyhttp://www.ieeta.pt/~tos/goldbach.html
- (sequence A080127 in the OEIS)
- "Conditional Calculation of pi(1024)"http://primes.utm.edu/notes/pi(10%5E24).html
- OEIS: A018239 includes 2 = empty product of first 0 primes plus 1, but 2 is excluded in this list.
- arXivhttps://arxiv.org/abs/1605.01371
- phttp://projecteuclid.org/euclid.em/1048515811
- Mathematics of Computationhttps://doi.org/10.2307%2F2005468
- It varies whether L0 = 2 is included in the Lucas numbers.
- The On-Line Encyclopedia of Integer Sequenceshttps://oeis.org/A121091
- The On-Line Encyclopedia of Integer Sequenceshttps://oeis.org/A121616
- The On-Line Encyclopedia of Integer Sequenceshttps://oeis.org/A121618
- Math. Comphttps://www.ams.org/journals/mcom/2009-78-266/S0025-5718-08-02090-5/S0025-5718-08-02090-5.pdf
- Journal of Recreational Mathematics
- Mathematics of Computationhttps://www.ams.org/journals/mcom/1967-21-098/S0025-5718-1967-0222007-9/S0025-5718-1967-0222007-9.pdf
- nhttps://doi.org/10.1007%2FBF01951947
- t5k.orghttps://t5k.org/lists/2small/0bit.html
- Subproject status at PrimeGridhttps://www.primegrid.com/server_status_subprojects.php
- The new book of prime number recordshttps://books.google.com/books?id=72eg8bFw40kC&q=ribenboim
- "Mirimanoff's Congruence: Other Congruences"http://www.museumstuff.com/learn/topics/Mirimanoff%27s_congruence::sub::Other_Congruences
- khttp://www.mpim-bonn.mpg.de/preprints/send?bid=4053
- Die Welt der Primzahlenhttps://www.gbv.de/dms/bs/toc/495799599.pdf