Topzle Topzle

List of formulae involving π

Updated: 11/6/2025, 2:11:03 AM Wikipedia source

The following is a list of significant formulae involving the mathematical constant π. Many of these formulae can be found in the article Pi, or the article Approximations of π.

Tables

· Formulae yielding <i>π</i> › Other infinite series
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}}
π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}}
Z = ∑ n = 0 ∞ ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}}
Z = ∑ n = 0 ∞ ( − 1 ) n ( 4 n ) ! ( 21460 n + 1123 ) ( n ! ) 4 441 2 n + 1 2 10 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(21460n+1123)}{(n!)^{4}{441}^{2n+1}{2}^{10n+1}}}}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}}
π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}}
Z = ∑ n = 0 ∞ ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}}
Z = ∑ n = 0 ∞ ( 6 n + 1 ) ( 1 2 ) n 3 4 n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(6n+1)\left({\frac {1}{2}}\right)_{n}^{3}}{{4^{n}}(n!)^{3}}}}
π = 32 Z {\displaystyle \pi ={\frac {32}{Z}}}
π = 32 Z {\displaystyle \pi ={\frac {32}{Z}}}
π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}}
π = 32 Z {\displaystyle \pi ={\frac {32}{Z}}}
Z = ∑ n = 0 ∞ ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}}
Z = ∑ n = 0 ∞ ( 5 − 1 2 ) 8 n ( 42 n 5 + 30 n + 5 5 − 1 ) ( 1 2 ) n 3 64 n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {{\sqrt {5}}-1}{2}}\right)^{8n}{\frac {(42n{\sqrt {5}}+30n+5{\sqrt {5}}-1)\left({\frac {1}{2}}\right)_{n}^{3}}{{64^{n}}(n!)^{3}}}}
π = 27 4 Z {\displaystyle \pi ={\frac {27}{4Z}}}
π = 27 4 Z {\displaystyle \pi ={\frac {27}{4Z}}}
π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}}
π = 27 4 Z {\displaystyle \pi ={\frac {27}{4Z}}}
Z = ∑ n = 0 ∞ ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}}
Z = ∑ n = 0 ∞ ( 2 27 ) n ( 15 n + 2 ) ( 1 2 ) n ( 1 3 ) n ( 2 3 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {2}{27}}\right)^{n}{\frac {(15n+2)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{3}}\right)_{n}\left({\frac {2}{3}}\right)_{n}}{(n!)^{3}}}}
π = 15 3 2 Z {\displaystyle \pi ={\frac {15{\sqrt {3}}}{2Z}}}
π = 15 3 2 Z {\displaystyle \pi ={\frac {15{\sqrt {3}}}{2Z}}}
π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}}
π = 15 3 2 Z {\displaystyle \pi ={\frac {15{\sqrt {3}}}{2Z}}}
Z = ∑ n = 0 ∞ ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}}
Z = ∑ n = 0 ∞ ( 4 125 ) n ( 33 n + 4 ) ( 1 2 ) n ( 1 3 ) n ( 2 3 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{125}}\right)^{n}{\frac {(33n+4)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{3}}\right)_{n}\left({\frac {2}{3}}\right)_{n}}{(n!)^{3}}}}
π = 85 85 18 3 Z {\displaystyle \pi ={\frac {85{\sqrt {85}}}{18{\sqrt {3}}Z}}}
π = 85 85 18 3 Z {\displaystyle \pi ={\frac {85{\sqrt {85}}}{18{\sqrt {3}}Z}}}
π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}}
π = 85 85 18 3 Z {\displaystyle \pi ={\frac {85{\sqrt {85}}}{18{\sqrt {3}}Z}}}
Z = ∑ n = 0 ∞ ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}}
Z = ∑ n = 0 ∞ ( 4 85 ) n ( 133 n + 8 ) ( 1 2 ) n ( 1 6 ) n ( 5 6 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{85}}\right)^{n}{\frac {(133n+8)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{6}}\right)_{n}\left({\frac {5}{6}}\right)_{n}}{(n!)^{3}}}}
π = 5 5 2 3 Z {\displaystyle \pi ={\frac {5{\sqrt {5}}}{2{\sqrt {3}}Z}}}
π = 5 5 2 3 Z {\displaystyle \pi ={\frac {5{\sqrt {5}}}{2{\sqrt {3}}Z}}}
π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}}
π = 5 5 2 3 Z {\displaystyle \pi ={\frac {5{\sqrt {5}}}{2{\sqrt {3}}Z}}}
Z = ∑ n = 0 ∞ ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}}
Z = ∑ n = 0 ∞ ( 4 125 ) n ( 11 n + 1 ) ( 1 2 ) n ( 1 6 ) n ( 5 6 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{125}}\right)^{n}{\frac {(11n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{6}}\right)_{n}\left({\frac {5}{6}}\right)_{n}}{(n!)^{3}}}}
π = 2 3 Z {\displaystyle \pi ={\frac {2{\sqrt {3}}}{Z}}}
π = 2 3 Z {\displaystyle \pi ={\frac {2{\sqrt {3}}}{Z}}}
π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}}
π = 2 3 Z {\displaystyle \pi ={\frac {2{\sqrt {3}}}{Z}}}
Z = ∑ n = 0 ∞ ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}}
Z = ∑ n = 0 ∞ ( 8 n + 1 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 9 n {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(8n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{9}^{n}}}}
π = 3 9 Z {\displaystyle \pi ={\frac {\sqrt {3}}{9Z}}}
π = 3 9 Z {\displaystyle \pi ={\frac {\sqrt {3}}{9Z}}}
π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}}
π = 3 9 Z {\displaystyle \pi ={\frac {\sqrt {3}}{9Z}}}
Z = ∑ n = 0 ∞ ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}}
Z = ∑ n = 0 ∞ ( 40 n + 3 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 49 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(40n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{49}^{2n+1}}}}
π = 2 11 11 Z {\displaystyle \pi ={\frac {2{\sqrt {11}}}{11Z}}}
π = 2 11 11 Z {\displaystyle \pi ={\frac {2{\sqrt {11}}}{11Z}}}
π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}}
π = 2 11 11 Z {\displaystyle \pi ={\frac {2{\sqrt {11}}}{11Z}}}
Z = ∑ n = 0 ∞ ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}}
Z = ∑ n = 0 ∞ ( 280 n + 19 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 99 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(280n+19)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{99}^{2n+1}}}}
π = 2 4 Z {\displaystyle \pi ={\frac {\sqrt {2}}{4Z}}}
π = 2 4 Z {\displaystyle \pi ={\frac {\sqrt {2}}{4Z}}}
π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}}
π = 2 4 Z {\displaystyle \pi ={\frac {\sqrt {2}}{4Z}}}
Z = ∑ n = 0 ∞ ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}}
Z = ∑ n = 0 ∞ ( 10 n + 1 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 9 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(10n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{9}^{2n+1}}}}
π = 4 5 5 Z {\displaystyle \pi ={\frac {4{\sqrt {5}}}{5Z}}}
π = 4 5 5 Z {\displaystyle \pi ={\frac {4{\sqrt {5}}}{5Z}}}
π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}}
π = 4 5 5 Z {\displaystyle \pi ={\frac {4{\sqrt {5}}}{5Z}}}
Z = ∑ n = 0 ∞ ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}}
Z = ∑ n = 0 ∞ ( 644 n + 41 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 5 n 72 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(644n+41)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}5^{n}{72}^{2n+1}}}}
π = 4 3 3 Z {\displaystyle \pi ={\frac {4{\sqrt {3}}}{3Z}}}
π = 4 3 3 Z {\displaystyle \pi ={\frac {4{\sqrt {3}}}{3Z}}}
π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}}
π = 4 3 3 Z {\displaystyle \pi ={\frac {4{\sqrt {3}}}{3Z}}}
Z = ∑ n = 0 ∞ ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}}
Z = ∑ n = 0 ∞ ( − 1 ) n ( 28 n + 3 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 3 n 4 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(28n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{3^{n}}{4}^{n+1}}}}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}}
π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}}
Z = ∑ n = 0 ∞ ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}}
Z = ∑ n = 0 ∞ ( − 1 ) n ( 20 n + 3 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 2 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(20n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{2}^{2n+1}}}}
π = 72 Z {\displaystyle \pi ={\frac {72}{Z}}}
π = 72 Z {\displaystyle \pi ={\frac {72}{Z}}}
π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}}
π = 72 Z {\displaystyle \pi ={\frac {72}{Z}}}
Z = ∑ n = 0 ∞ ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}}
Z = ∑ n = 0 ∞ ( − 1 ) n ( 4 n ) ! ( 260 n + 23 ) ( n ! ) 4 4 4 n 18 2 n {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(260n+23)}{(n!)^{4}4^{4n}18^{2n}}}}
π = 3528 Z {\displaystyle \pi ={\frac {3528}{Z}}}
π = 3528 Z {\displaystyle \pi ={\frac {3528}{Z}}}
π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}}
π = 3528 Z {\displaystyle \pi ={\frac {3528}{Z}}}
Z = ∑ n = 0 ∞ ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}}
Z = ∑ n = 0 ∞ ( − 1 ) n ( 4 n ) ! ( 21460 n + 1123 ) ( n ! ) 4 4 4 n 882 2 n {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(21460n+1123)}{(n!)^{4}4^{4n}882^{2n}}}}
π = 1 {Z}}}
Z = ∑ n = 0 ∞ ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 ^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}}
π = 4 {Z}}}
Z = ∑ n = 0 ∞ ( − 1 ) n ( 4 n ) ! ( 21460 n + 1123 ) ( n ! ) 4 441 2 ^{\infty }{\frac {(-1)^{n}(4n)!(21460n+1123)}{(n!)^{4}{441}^{2n+1}{2}^{10n+1}}}}
π = 4 {Z}}}
Z = ∑ n = 0 ∞ ( 6 n + 1 ) ( 1 2 ) n 3 4 n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(6n+1)\left({\frac {1}{2}} ight)_{n}^{3}}{{4^{n}}(n!)^{3}}}}
π = 32 {Z}}}
Z = ∑ n = 0 ∞ ( 5 − 1 2 ) 8 n ( 42 n 5 + 30 n + 5 5 − 1 ) ( 1 2 ) n 3 64 n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {{\sqrt {5}}-1}{2}} ight)^{8n}{\frac {(42n{\sqrt {5}}+30n+5{\sqrt {5}}-1)\left({\frac {1}{2}} ight)_{n}^{3}}{{64^{n}}(n!)^{3}}}}
π = 27 4 {4Z}}}
Z = ∑ n = 0 ∞ ( 2 27 ) n ( 15 n + 2 ) ( 1 2 ) n ( 1 3 ) n ( 2 3 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {2}{27}} ight)^{n}{\frac {(15n+2)\left({\frac {1}{2}} ight)_{n}\left({\frac {1}{3}} ight)_{n}\left({\frac {2}{3}} ight)_{n}}{(n!)^{3}}}}
π = 15 3 2 }}{2Z}}}
Z = ∑ n = 0 ∞ ( 4 125 ) n ( 33 n + 4 ) ( 1 2 ) n ( 1 3 ) n ( 2 3 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{125}} ight)^{n}{\frac {(33n+4)\left({\frac {1}{2}} ight)_{n}\left({\frac {1}{3}} ight)_{n}\left({\frac {2}{3}} ight)_{n}}{(n!)^{3}}}}
π = 85 85 18 3 }}{18{\sqrt {3}}Z}}}
Z = ∑ n = 0 ∞ ( 4 85 ) n ( 133 n + 8 ) ( 1 2 ) n ( 1 6 ) n ( 5 6 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{85}} ight)^{n}{\frac {(133n+8)\left({\frac {1}{2}} ight)_{n}\left({\frac {1}{6}} ight)_{n}\left({\frac {5}{6}} ight)_{n}}{(n!)^{3}}}}
π = 5 5 2 3 }}{2{\sqrt {3}}Z}}}
Z = ∑ n = 0 ∞ ( 4 125 ) n ( 11 n + 1 ) ( 1 2 ) n ( 1 6 ) n ( 5 6 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{125}} ight)^{n}{\frac {(11n+1)\left({\frac {1}{2}} ight)_{n}\left({\frac {1}{6}} ight)_{n}\left({\frac {5}{6}} ight)_{n}}{(n!)^{3}}}}
π = 2 3 }}{Z}}}
Z = ∑ n = 0 ∞ ( 8 n + 1 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 9 ^{\infty }{\frac {(8n+1)\left({\frac {1}{2}} ight)_{n}\left({\frac {1}{4}} ight)_{n}\left({\frac {3}{4}} ight)_{n}}{(n!)^{3}{9}^{n}}}}
π = 3 9 }{9Z}}}
Z = ∑ n = 0 ∞ ( 40 n + 3 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 49 2 ^{\infty }{\frac {(40n+3)\left({\frac {1}{2}} ight)_{n}\left({\frac {1}{4}} ight)_{n}\left({\frac {3}{4}} ight)_{n}}{(n!)^{3}{49}^{2n+1}}}}
π = 2 11 11 }}{11Z}}}
Z = ∑ n = 0 ∞ ( 280 n + 19 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 99 2 ^{\infty }{\frac {(280n+19)\left({\frac {1}{2}} ight)_{n}\left({\frac {1}{4}} ight)_{n}\left({\frac {3}{4}} ight)_{n}}{(n!)^{3}{99}^{2n+1}}}}
π = 2 4 }{4Z}}}
Z = ∑ n = 0 ∞ ( 10 n + 1 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 9 2 ^{\infty }{\frac {(10n+1)\left({\frac {1}{2}} ight)_{n}\left({\frac {1}{4}} ight)_{n}\left({\frac {3}{4}} ight)_{n}}{(n!)^{3}{9}^{2n+1}}}}
π = 4 5 5 }}{5Z}}}
Z = ∑ n = 0 ∞ ( 644 n + 41 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 5 ^{\infty }{\frac {(644n+41)\left({\frac {1}{2}} ight)_{n}\left({\frac {1}{4}} ight)_{n}\left({\frac {3}{4}} ight)_{n}}{(n!)^{3}5^{n}{72}^{2n+1}}}}
π = 4 3 3 }}{3Z}}}
Z = ∑ n = 0 ∞ ( − 1 ) n ( 28 n + 3 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 3 ^{\infty }{\frac {(-1)^{n}(28n+3)\left({\frac {1}{2}} ight)_{n}\left({\frac {1}{4}} ight)_{n}\left({\frac {3}{4}} ight)_{n}}{(n!)^{3}{3^{n}}{4}^{n+1}}}}
π = 4 {Z}}}
Z = ∑ n = 0 ∞ ( − 1 ) n ( 20 n + 3 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 2 2 ^{\infty }{\frac {(-1)^{n}(20n+3)\left({\frac {1}{2}} ight)_{n}\left({\frac {1}{4}} ight)_{n}\left({\frac {3}{4}} ight)_{n}}{(n!)^{3}{2}^{2n+1}}}}
π = 72 {Z}}}
Z = ∑ n = 0 ∞ ( − 1 ) n ( 4 n ) ! ( 260 n + 23 ) ( n ! ) 4 4 4 ^{\infty }{\frac {(-1)^{n}(4n)!(260n+23)}{(n!)^{4}4^{4n}18^{2n}}}}
π = 3528 {Z}}}
Z = ∑ n = 0 ∞ ( − 1 ) n ( 4 n ) ! ( 21460 n + 1123 ) ( n ! ) 4 4 4 ^{\infty }{\frac {(-1)^{n}(4n)!(21460n+1123)}{(n!)^{4}4^{4n}882^{2n}}}}

References

  1. The relation μ 0 = 4
  2. (integral form of arctan over its entire domain, giving the period of tan)
  3. The coefficients can be obtained by reversing the Puiseux series of z ↦
  4. The n {\displaystyle n} th root with the smallest positive principal argument
  5. When n ∈ Q +
  6. When n ∈ Q
  7. Regular and Chaotic Dynamics
    https://www.maths.tcd.ie/~lebed/Galperin.%20Playing%20pool%20with%20pi.pdf
  8. Real and Complex Analysis
  9. "A000796 – OEIS"
    https://oeis.org/A000796
  10. NIST Handbook of Mathematical Functions
    http://dlmf.nist.gov/19.8.i
  11. π Unleashed
  12. Numbers, constants and computation
    http://numbers.computation.free.fr/Constants/Algorithms/nthdecimaldigit.pdf
  13. "Weisstein, Eric W. "Pi Formulas", MathWorld"
    http://mathworld.wolfram.com/PiFormulas.html
  14. Algebra, an Elementary Text-book: Part II
  15. The Number Pi
  16. Ramanujan's Theta Functions
  17. Introductio in analysin infinitorum
  18. Carl B. Boyer, A History of Mathematics, Chapter 21., pp. 488–489
  19. Introductio in analysin infinitorum
  20. "Summing inverse squares by euclidean geometry"
    http://www.math.chalmers.se/~wastlund/Cosmic.pdf
  21. "The world of Pi"
    http://www.pi314.net/eng/ramanujan.php
  22. Real and Complex Analysis
  23. Amazing and Aesthetic Aspects of Analysis
  24. Die Lehre von den Kettenbrüchen: Band II
  25. Ricerche di Matematica
    https://doi.org/10.1007/s11587-018-0426-4
  26. Mathematics
    https://doi.org/10.3390%2Fmath9172162
  27. π Unleashed
  28. The Number Pi
  29. Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity
  30. Universität Wien
    https://homepage.univie.ac.at/tomack.gilmore/papers/Agm.pdf
  31. Pi: A Source Book
    https://link.springer.com/chapter/10.1007/978-1-4757-3240-5_62
  32. The Number Pi
Image
Source:
Tip: Wheel or +/− to zoom, drag to pan, Esc to close.