Topzle Topzle

Huaynaputina

Updated: 12/11/2025, 3:43:56 PM Wikipedia source

Huaynaputina ( WY-nə-puu-TEE-nə; Spanish: [wajnapuˈtina]) is a volcano in a volcanic high plateau in southern Peru. Lying in the Central Volcanic Zone of the Andes, it was formed by the subduction of the oceanic Nazca Plate under the continental South American Plate. Huaynaputina is a large volcanic crater, which lacks an identifiable mountain profile, with an outer stratovolcano and three younger volcanic vents within an amphitheatre-shaped structure that is either a former caldera or a remnant of glacial erosion. The volcano has erupted dacitic magma. Huaynaputina has erupted several times during the Holocene, including on 19 February 1600 – the largest recorded eruption ever witnessed in South America – which continued with a series of events into March. Witnessed by people in the city of Arequipa, it killed at least 1,000–1,500 people in the region, wiped out vegetation, buried the surrounding area with 2 metres (7 ft) of volcanic rock, and damaged infrastructure and economic resources. The eruption had a significant impact on Earth's climate, causing a volcanic winter: temperatures in the Northern Hemisphere decreased; cold waves hit parts of Europe, Asia, and the Americas; and the climate disruption may have played a role in the onset of the Little Ice Age. Floods, famines, and social upheavals resulted, including a probable link with the Russian famine of 1601–1603 and Time of Troubles. This eruption has been computed to measure 6 on the Volcanic Explosivity Index (VEI). The volcano has not erupted since 1600. There are fumaroles in the amphitheatre-shaped structure, and hot springs occur in the region, some of which have been associated with Huaynaputina. The volcano lies in a remote region where there is little human activity, but about 30,000 people live in the immediately surrounding area, and another one million in the Arequipa metropolitan area. If an eruption similar to the 1600 event were to occur, it would quite likely lead to a high death toll and cause substantial socioeconomic disruption. The Peruvian Geophysical Institute announced in 2017 that Huaynaputina would be monitored by the Southern Volcanological Observatory, and seismic observation began in 2019.

Infobox

Elevation
≈4,850 m (15,910 ft)
Listing
List of volcanoes in Peru
Coordinates
mw- 16°36′56″S 70°50′59″W / 16.61556°S 70.84972°W / -16.61556; -70.84972
Language of name
Quechua
Location
Peru
Parent range
Andes
Mountain type
Stratovolcano
Volcanic zone
Central Volcanic Zone
Last eruption
February to March 1600

Tables

List of estimates of sulfuric acid yield of the 1600 eruption · 1600 eruption › Global atmospheric impacts of the 1600 eruption
100 million tons
100 million tons
Estimate of sulfuric acid erupted
100 million tons
Location (if mentioned)
Southern Hemisphere
42 million tons
42 million tons
Estimate of sulfuric acid erupted
42 million tons
Location (if mentioned)
Northern Hemisphere
56.59 million tons
56.59 million tons
Estimate of sulfuric acid erupted
56.59 million tons
Location (if mentioned)
Global
34.5 million tons
34.5 million tons
Estimate of sulfuric acid erupted
34.5 million tons
Location (if mentioned)
Northern Hemisphere
Estimate of sulfuric acid erupted
Location (if mentioned)
Ref.
100 million tons
Southern Hemisphere
42 million tons
Northern Hemisphere
million tons
Global
million tons
Northern Hemisphere

References

  1. The current geologic epoch, which began 11,700 years ago.
  2. Vents which release volcanic gases.
  3. "Volcano of the bad omen"
  4. Fragmented volcanic rocks erupted by the vent.
  5. A maar is an explosion crater formed through the interaction of magma and groundwater.
  6. A volcanic process triggered by the interaction of magma and water.
  7. An intense volcanic eruption that ejects material as a high column of ash and pumice.
  8. A sheet-shaped intrusion of magma into already existing rock.
  9. A strike-slip fault features two plates moving past each other horizontally.
  10. Ignimbrites are fluids consisting of gas and fragmented rocks that are expelled from volcanoes and form ignimbritic rock
  11. A graben is a rectangular depression, which forms when the crust spreads and a block of it sags.
  12. Volatiles are compounds such as water and carbon dioxide that are gaseous at magmatic temperatures but are mixed in the
  13. Vulcanian eruptions have bursts of explosions, while Plinian eruptions are ongoing stable explosive eruptions.
  14. changes in magma composition caused by crystals settling out under their weight.
  15. A volcanic rock relatively rich in iron and magnesium, relative to silicium.
  16. chemically formed deposits in caves.
  17. The prehistoric eruption of Cerro Blanco in Argentina about 2,300 ± 60 BCE exceeded the size of Huaynaputina's.
  18. Geotourism is a type of tourism to sites with geologic features, like active volcanoes.
  19. San Genaro had been called due to his responses to eruptions of the Vesuvius volcano in the Kingdom of Naples.
  20. In Andean mythology, earth motions are often associated with snakes.
  21. 46 million tons according to Arfeuille et al. 2014 which refers to sulfate aerosols consisting of 75% sulfuric acid, thu
  22. For comparison, the solar constant regarding Earth is about 1367 W/m2.
  23. Although other reconstructions have been interpreted as signalling a warm period at that time.
  24. Frost rings are anomalous tree rings that form when frost occurs during the growing season.
  25. A palsa is a dome of peat with a frozen core that forms through ice dynamics.
  26. A groundsel, Senecio huaynaputinaensis, was discovered on Huaynaputina's deposits and named after the volcano.
  27. Global Volcanism Program
    https://volcano.si.edu/volcano.cfm?vn=354030
  28. "International Chronostratigraphic Chart"
    https://stratigraphy.org/ICSchart/ChronostratChart2020-03.pdf
  29. Encyclopedia of Astrobiology
    https://link.springer.com/referenceworkentry/10.1007/978-3-642-11274-4_605
  30. Journal of the American Geographical Society of New York
    https://doi.org/10.2307%2F196346
  31. Adams et al. 2001, p. 495.
  32. Recursos Turisticos
    https://web.archive.org/web/20200801193229/http://ficha.sigmincetur.mincetur.gob.pe/index.aspx?cod_Ficha=1879
  33. Perkins 2008, p. 18.
  34. Mariño et al. 2022, p. 6.
  35. Bullard 1962, p. 448.
  36. Garfia 2024, p. 28.
  37. Mariño et al. 2022, p. 27.
  38. Lavallée et al. 2009, p. 255.
  39. Thouret et al. 2005, p. 558.
  40. Delacour et al. 2007, p. 582.
  41. Prival et al. 2019, p. 2.
  42. Masías Alvarez, Ramos Palomino & Antayhua Vera 2013, p. 6.
  43. Cueva Sandoval et al. 2018, p. 96.
  44. de Silva 1998, p. 455.
  45. Schwarzer et al. 2010, p. 1542.
  46. Cueva Sandoval et al. 2022, p. 13.
  47. Bullard 1962, p. 449.
  48. Mariño et al. 2021, p. 2.
  49. Thouret et al. 2002, p. 531.
  50. Eissen, Davila & Thouret 1999, p. 435.
  51. Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 8.
  52. de Silva & Francis 1990, p. 296.
  53. Yupa Paredes, Pajuelo Aparicio & Cruz Pauccara 2019, p. 26.
  54. Thouret et al. 2002, p. 530.
  55. Schwarzer et al. 2010, p. 1540.
  56. Thouret et al. 1997, p. 933.
  57. Petrology
    https://doi.org/10.1007%2F0-387-30845-8_238
  58. Woodman et al. 1996, p. 62.
  59. Thouret et al. 2002, p. 533.
  60. Thouret et al. 2002, p. 532.
  61. Revista OVI
    http://repositorio.ingemmet.gob.pe/handle/20.500.12544/1242
  62. Adams et al. 2001, p. 514.
  63. Woodman et al. 1996, p. 61.
  64. A Dictionary of Environment and Conservation
    https://www.oxfordreference.com/view/10.1093/acref/9780199641666.001.0001/acref-9780199641666-e-4675
  65. Dictionary of Geotourism
    https://link.springer.com/referenceworkentry/10.1007/978-981-13-2538-0_1879
  66. Dictionary of Geotourism
    https://link.springer.com/referenceworkentry/10.1007/978-981-13-2538-0_1915
  67. Lavallée et al. 2006, p. 339.
  68. Encyclopedia of Planetary Landforms
    https://link.springer.com/referenceworkentry/10.1007%2F978-1-4614-3134-3_112
  69. Adams et al. 2001, p. 496.
  70. Lavallée et al. 2006, p. 337.
  71. Lavallée et al. 2006, p. 338.
  72. Lavallée et al. 2006, p. 341.
  73. Lavallée et al. 2009, p. 260.
  74. de Silva & Francis 1991, p. 140.
  75. Encyclopedia of Planetary Landforms
    https://link.springer.com/referenceworkentry/10.1007/978-1-4614-9213-9_548-1
  76. Masías Alvarez, Ramos Palomino & Antayhua Vera 2013, p. 5.
  77. de Silva & Francis 1990, p. 287.
  78. de Silva, Alzueta & Salas 2000, p. 16.
  79. Lavallée et al. 2006, p. 336.
  80. Lavallée et al. 2006, p. 335.
  81. Dictionary of Geotourism
    https://link.springer.com/referenceworkentry/10.1007/978-981-13-2538-0_1142
  82. Prival et al. 2019, p. 3.
  83. Encyclopedia of Planetary Landforms
    https://link.springer.com/referenceworkentry/10.1007/978-1-4614-3134-3_177
  84. Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik
    https://link.springer.com/referenceworkentry/10.1007/978-3-642-41714-6_71494
  85. Lavallée et al. 2006, p. 334.
  86. Lavallée et al. 2009, p. 259.
  87. Lavallée et al. 2009, p. 263.
  88. Lavallée et al. 2009, pp. 262–263.
  89. AGU Fall Meeting Abstracts
    https://ui.adsabs.harvard.edu/abs/2003AGUFM.V52G..06L
  90. Dietterich & de Silva 2010, pp. 307–308.
  91. Journal of South American Earth Sciences
    https://ui.adsabs.harvard.edu/abs/2001JSAES..14...15L
  92. Adams et al. 2001, p. 504.
  93. Costa, Scaillet & Gourgaud 2003, p. 1.
  94. Oliver et al. 1996, p. 610.
  95. Juvigné et al. 2008, p. 170.
  96. Lavallée et al. 2006, p. 343.
  97. Encyclopedia of Astrobiology
    https://link.springer.com/referenceworkentry/10.1007/978-3-642-27833-4_1669-3
  98. Geophysical Journal International
    https://doi.org/10.1111%2Fj.1365-246X.1990.tb01763.x
  99. Schubring, Salas & Silva 2008, p. 390.
  100. Adams et al. 2001, p. 517.
  101. Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik
    https://link.springer.com/referenceworkentry/10.1007%2F978-3-642-41714-6_71993
  102. Oliver et al. 1996, p. 612.
  103. Schubring, Salas & Silva 2008, p. 387.
  104. Adams et al. 2001, p. 512.
  105. Schubring, Salas & Silva 2008, p. 388.
  106. Encyclopedia of Astrobiology
    https://doi.org/10.1007%2F978-3-642-11274-4_1893
  107. Dietterich & de Silva 2010, p. 310.
  108. de Silva & Francis 1990, p. 298.
  109. Lavallée et al. 2006, p. 346.
  110. Lavallée et al. 2006, pp. 334–335.
  111. Lavallée et al. 2009, p. 257.
  112. Thouret et al. 2002, p. 537.
  113. Lavallée et al. 2009, p. 261.
  114. Instituto Geológico, Minero y Metalúrgico
    http://repositorio.ingemmet.gob.pe/handle/20.500.12544/1466
  115. Geological Society, London, Special Publications
    https://sp.lyellcollection.org/content/273/1/177
  116. Juvigné et al. 2008, p. 159.
  117. Mariño et al. 2021, p. 6.
  118. de Silva, Alzueta & Salas 2000, p. 17.
  119. Journal of Volcanology and Geothermal Research
    https://ui.adsabs.harvard.edu/abs/2011JVGR..206..121L
  120. Thouret et al. 2002, p. 567.
  121. Eissen, Davila & Thouret 1999, p. 438.
  122. Living Under the Shadow: Cultural Impacts of Volcanic Eruptions
  123. Thouret et al. 2002, p. 547.
  124. Geographical Journal
    https://ui.adsabs.harvard.edu/abs/2005GeogJ.171..125D
  125. Adams et al. 2001, p. 497.
  126. Thouret et al. 2002, p. 562.
  127. Bullard 1962, p. 444.
  128. Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 41.
  129. Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 45.
  130. Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 43.
  131. Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 57.
  132. Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 47.
  133. Yupa Paredes, Pajuelo Aparicio & Cruz Pauccara 2019, p. 66.
  134. Yupa Paredes, Pajuelo Aparicio & Cruz Pauccara 2019, p. 64.
  135. Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 48.
  136. Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 51.
  137. Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 55.
  138. de Silva, Alzueta & Salas 2000, p. 23.
  139. Prival et al. 2019, p. 14.
  140. Thouret et al. 2002, p. 553.
  141. Journal of Volcanology and Geothermal Research
    https://ui.adsabs.harvard.edu/abs/2014JVGR..270..122R
  142. Sepulveda 2019, p. 3.
  143. Encyclopedia of Paleoclimatology and Ancient Environments
    https://link.springer.com/referenceworkentry/10.1007%2F978-1-4020-4411-3_213
  144. AGU Fall Meeting Abstracts
    https://ui.adsabs.harvard.edu/abs/2006AGUFMGC51A0458L
  145. Adams et al. 2001, p. 515.
  146. Lavallée et al. 2006, p. 344.
  147. Dietterich & de Silva 2010, p. 307.
  148. Adams et al. 2001, p. 498.
  149. Bulletin of Volcanology
    https://ui.adsabs.harvard.edu/abs/2010BVol...72..259C
  150. Adams et al. 2001, p. 501.
  151. Adams et al. 2001, p. 508.
  152. Dietterich & de Silva 2010, p. 306.
  153. Lara 2013, p. 140.
  154. Eissen, Davila & Thouret 1999, p. 437.
  155. Adams et al. 2001, p. 516.
  156. Thouret et al. 2002, p. 550.
  157. Lavallée et al. 2006, p. 340.
  158. Thouret et al. 2002, p. 558.
  159. Thouret et al. 2002, p. 564.
  160. de Silva, Alzueta & Salas 2000, p. 20.
  161. Adams et al. 2001, p. 503.
  162. Lara 2013, p. 139.
  163. Peralta Casani 2021, p. 62.
  164. Peralta Casani 2021, p. 63.
  165. Petit-Breuilh Sepúlveda 2004, p. 92.
  166. Bullard 1962, p. 450.
  167. Bullard 1962, p. 451.
  168. Lavallée et al. 2006, pp. 338, 341.
  169. Thouret et al. 1997, p. 938.
  170. Advances in Geosciences
    https://doi.org/10.5194%2Fadgeo-22-125-2009
  171. de Silva & Francis 1991, p. 141.
  172. Robock, Self & Newhall 2018, p. 571.
  173. Estudios Geológicos
    http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/982
  174. Adams et al. 2001, p. 494.
  175. Lara 2016, p. 250.
  176. Dietterich & de Silva 2010, p. 305.
  177. Fei & Zhou 2009, p. 927.
  178. Lee, Zhang & Fei 2016, p. 2.
  179. Thouret et al. 2002, p. 568.
  180. Dietterich & de Silva 2010, pp. 306–307.
  181. Revista Mexicana de Ciencias Geológicas
    http://www.scielo.org.mx/scielo.php?pid=S1026-87742015000100004&script=sci_arttext&tlng=pt
  182. "Physical impacts of the CE 1600 Huaynaputina eruption on the local habitat: Geophysical insights"
    https://web.archive.org/web/20190327070349/https://ovs.igp.gob.pe/sites/ovs.igp.gob.pe/files/pdf/Investigacion/Articulos/Ubinas/physical_impacts_of_the_ce_1600_huaynaputina_eruption_on_the_local_habitat_geophysical_insights.pdf
  183. Mariño et al. 2021, p. 7.
  184. Journal of Field Archaeology
    https://ui.adsabs.harvard.edu/abs/2005JFArc..30..385D
  185. Journal of Volcanology and Geothermal Research
    https://ui.adsabs.harvard.edu/abs/2014JVGR..269...68B
  186. Bulletin of Volcanology
    https://doi.org/10.1007%2Fs00445-015-0927-x
  187. Love 2017, p. 56.
  188. Mariño et al. 2022, p. 34.
  189. Journal of Volcanology and Geothermal Research
    https://ui.adsabs.harvard.edu/abs/2012JVGR..241..105C
  190. Thouret et al. 2005, p. 567.
  191. Environmental Science & Technology
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863380
  192. Prival et al. 2019, p. 4.
  193. Journal of Volcanology and Geothermal Research
    https://ui.adsabs.harvard.edu/abs/2016JVGR..323..110S
  194. Advances in Space Research
    https://ui.adsabs.harvard.edu/abs/2012AdSpR..50..108V
  195. AGU Fall Meeting Abstracts
    https://ui.adsabs.harvard.edu/abs/2012AGUFMGC21D0995S
  196. Delacour et al. 2007, p. 589.
  197. Historical Archaeology
    https://doi.org/10.1007%2FBF03374220
  198. Tectonophysics
    https://www.sciencedirect.com/science/article/abs/pii/S0040195122001494
  199. Malek et al. 2019, p. 213.
  200. Malek et al. 2019, p. 205.
  201. Osipov et al. 2014, p. 845.
  202. Climate Dynamics
    https://ui.adsabs.harvard.edu/abs/2013ClDy...40..731W
  203. Nature
    https://web.archive.org/web/20190926180754/http://greenlandmelt.pageflow.io/greenland-melting#179348
  204. The Anthropocene Review
    https://ui.adsabs.harvard.edu/abs/2015AntRv...2..128L
  205. Cueva Sandoval et al. 2018, p. 99.
  206. Journal of Biogeography
    https://ui.adsabs.harvard.edu/abs/2012JBiog..39..510D
  207. de Silva, Alzueta & Salas 2000, p. 19.
  208. Mariño et al. 2021, p. 9.
  209. Diario Correo
    https://diariocorreo.pe/edicion/moquegua/alistan-expedicion-para-redescubir-pueblos-extintos-por-volcan-huaynaputina-619668/
  210. Peralta Casani 2021, p. 11.
  211. THE FIRST IUGS GEOLOGICAL HERITAGE SITES
    https://iugs-geoheritage.org/videos-pdfs/iugs_first_100_book_v2.pdf
  212. Marsilli 2011, p. 268.
  213. Agencia Peruana de Noticias Andina
    https://andina.pe/Agencia/noticia-estagagache-pompeya-peruana-sepultada-por-erupcion-del-huaynaputina-video-736607.aspx
  214. Mariño et al. 2022, p. 32.
  215. Mariño et al. 2022, p. 8.
  216. de Silva & Francis 1990, p. 288.
  217. Dangerous Neighbors: Volcanoes and Cities
  218. Marsilli 2011, p. 267.
  219. Municipalidad Provincial General Sánchez Cerro
    https://web.archive.org/web/20190327071832/http://www.muniomate.gob.pe/index.php/historia/3-historia
  220. Love 2017, p. 58.
  221. International Journal of Historical Archaeology
    https://doi.org/10.1007%2Fs10761-011-0151-0
  222. International Journal of Osteoarchaeology
    https://doi.org/10.1002%2Foa.1074
  223. The angry earth: disaster in anthropological perspective
    https://search.worldcat.org/oclc/815970176
  224. Lara 2016, p. 251.
  225. Universum (Talca)
    https://doi.org/10.4067%2FS0718-23762006000200004
  226. Thouret et al. 1997, p. 932.
  227. Oliver et al. 1996, p. 609.
  228. Mariño et al. 2021, p. 17.
  229. Universum (Talca)
    https://doi.org/10.4067%2FS0718-23762004000200004
  230. Rice 2014, p. 173.
  231. Boza Cuadros 2021, p. 11.
  232. Sepulveda 2019, p. 6.
  233. La Vida y la Historia
    http://revistas.unjbg.edu.pe/index.php/vyh/article/view/938
  234. INDIANA -Anthropologische Studien zu Lateinamerika und der Karibik
    https://journals.iai.spk-berlin.de/index.php/indiana/article/view/1633
  235. Boletín del Museo Chileno de Arte Precolombino
    https://doi.org/10.4067%2FS0718-68942016000100006
  236. Historia Regional
    https://www.historiaregional.org/ojs/index.php/historiaregional/article/view/810
  237. Garfia 2024, p. 13.
  238. Petit-Breuilh Sepúlveda 2004, p. 100.
  239. Boza Cuadros 2021, p. 20.
  240. Peralta Casani 2021, p. 69.
  241. Human Ecology
    https://ui.adsabs.harvard.edu/abs/2009HumEc..37..421W
  242. de Silva, Alzueta & Salas 2000, p. 21.
  243. Peralta Casani 2021, p. 55.
  244. Petit-Breuilh Sepúlveda 2004, p. 97.
  245. Peralta Casani 2021, pp. 62–63.
  246. Petit-Breuilh Sepúlveda 2004, p. 96.
  247. Lara 2016, pp. 251–252.
  248. Lara 2016, p. 252.
  249. Rice 2014, pp. 217–218.
  250. Peralta Casani 2021, p. 53.
  251. Love 2017, p. 57.
  252. Lara 2013, p. 141–142.
  253. Antiquity
    https://doi.org/10.1017%2FS0003598X00084064
  254. Love 2017, p. 63.
  255. Diálogo Andino – Revista de Historia, Geografía y Cultura Andina
    https://web.archive.org/web/20190324112150/https://www.redalyc.org/html/3713/371336247005/
  256. Journal of Archaeological Science: Reports
    https://doi.org/10.1016%2Fj.jasrep.2020.102659
  257. Marsilli 2011, p. 271.
  258. Marsilli 2011, p. 273.
  259. de Silva 1998, p. 456.
  260. Fei & Zhou 2009, p. 928.
  261. Adams et al. 2001, pp. 494–495.
  262. Slawinska & Robock 2017, p. 2147.
  263. The Cryosphere
    https://doi.org/10.5194%2Ftc-8-639-2014
  264. Climate of the Past
    https://cp.copernicus.org/articles/10/359/2014/
  265. Scientific Reports
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056521
  266. Plechov, Balashova & Dirksen 2010, p. 976.
  267. Annals of Glaciology
    https://doi.org/10.3189%2F172756402781816771
  268. Proceedings of the National Academy of Sciences
    https://doi.org/10.1073%2Fpnas.2221810120
  269. Osipov et al. 2014, p. 847.
  270. Costa, Scaillet & Gourgaud 2003, p. 3.
  271. Journal of Geophysical Research: Atmospheres
    https://ui.adsabs.harvard.edu/abs/1995JGR...10020937Z
  272. Reviews in Mineralogy and Geochemistry
    https://ui.adsabs.harvard.edu/abs/2011RvMG...73..285P
  273. Nature
    https://ui.adsabs.harvard.edu/abs/2015Natur.519..171L
  274. Advances in Meteorology
    https://doi.org/10.1155%2F2014%2F340123
  275. Lee, Zhang & Fei 2016, p. 1.
  276. Geophysical Research Letters
    https://www.research.ed.ac.uk/portal/files/10515668/grl50060GRL.pdf
  277. Climate of the Past
    https://cp.copernicus.org/articles/6/723/2010/
  278. Dendrochronologia
    https://ui.adsabs.harvard.edu/abs/2002Dendr..20...69B
  279. The Medieval History Journal
    https://doi.org/10.1177%2F097194580701000202
  280. Palaeogeography, Palaeoclimatology, Palaeoecology
    https://ui.adsabs.harvard.edu/abs/2005PPP...228..130S
  281. International Journal of Climatology
    https://ui.adsabs.harvard.edu/abs/2020IJCli..40.1561L
  282. Climate Dynamics
    https://ui.adsabs.harvard.edu/abs/2019ClDy...53.4569X
  283. Climate of the Past
    https://doi.org/10.5194%2Fcp-18-1475-2022
  284. Journal of Geophysical Research
    https://doi.org/10.1029%2F2008JG000830
  285. International Journal of Climatology
    https://ui.adsabs.harvard.edu/abs/2012IJCli..32.1089C
  286. Fei & Zhou 2009, p. 931.
  287. Agrofaz: Publicación semestral de investigación científica
    https://dialnet.unirioja.es/servlet/articulo?codigo=8708265
  288. Climatic Change
    https://ui.adsabs.harvard.edu/abs/2000ClCh...45..361S
  289. Slawinska & Robock 2017, pp. 2153–2154.
  290. Palaeogeography, Palaeoclimatology, Palaeoecology
    https://ui.adsabs.harvard.edu/abs/2003PPP...194...41K
  291. Peralta Casani 2021, p. 65.
  292. Verosub & Lippman 2008, p. 142.
  293. Journal of Climate
    https://doi.org/10.1175%2FJCLI-D-21-0986.1
  294. PLOS ONE
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709040
  295. AGU Fall Meeting Abstracts
    https://ui.adsabs.harvard.edu/abs/2017AGUFMPP43D..05Z
  296. Environment and History
    https://ui.adsabs.harvard.edu/abs/2020EnHis..26..549D
  297. Weather
    https://doi.org/10.1002%2Fwea.3846
  298. Geophysical Research Letters
    https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021GL092964
  299. Slawinska & Robock 2017, pp. 2152–2153.
  300. Wiley Interdisciplinary Reviews: Climate Change
    https://ui.adsabs.harvard.edu/abs/2018WIRCC...9E.518D
  301. Robock, Self & Newhall 2018, p. 578.
  302. Global and Planetary Change
    https://ui.adsabs.harvard.edu/abs/2007GPC....59..225S
  303. Moreno-Chamarro et al. 2017, p. 734.
  304. Moreno-Chamarro et al. 2017, p. 739.
  305. White et al. 2022, p. 740.
  306. Moreno-Chamarro et al. 2017, p. 742.
  307. White et al. 2022, p. 751.
  308. Quaternary Science Reviews
    https://doi.org/10.1016%2Fj.quascirev.2019.106104
  309. Professional Paper
    https://www.nrfirescience.org/resource/13363
  310. Geophysical Research Letters
    https://doi.org/10.1029%2F1999GL900272
  311. Geophysical Research Letters
    https://www.dora.lib4ri.ch/wsl/islandora/object/wsl%3A2695
  312. Climatic Change
    https://ui.adsabs.harvard.edu/abs/1999ClCh...41....1D
  313. Geophysical Research Letters
    https://www.dora.lib4ri.ch/wsl/islandora/object/wsl%3A2139
  314. The Holocene
    https://ui.adsabs.harvard.edu/abs/2001Holoc..11..243L
  315. Earth Science and Human History 101
  316. Archaeology of Eastern North America
    https://search.worldcat.org/issn/0360-1021
  317. Schimmelmann et al. 2017, p. 58.
  318. Schimmelmann et al. 2017, p. 59.
  319. Schimmelmann et al. 2017, p. 51.
  320. Schimmelmann et al. 2017, p. 55.
  321. Against the current:The Mojave River from Sink to source
    https://web.archive.org/web/20221006140640/http://www.desertsymposium.org/2018%20DS%20Against%20the%20Current.pdf#page=165
  322. Perkins 2008, p. 19.
  323. International Journal of Climatology
    https://ui.adsabs.harvard.edu/abs/2019IJCli..39.2336K
  324. Geofísica Internacional
    http://www.scielo.org.mx/scielo.php?pid=S0016-71692018000100067&script=sci_arttext
  325. Environmental Research Letters
    https://doi.org/10.1088%2F1748-9326%2Fabc120
  326. Trees
    http://doc.rero.ch/record/321705/files/468_2005_Article_17.pdf
  327. Palaeogeography, Palaeoclimatology, Palaeoecology
    https://ui.adsabs.harvard.edu/abs/2002PPP...186..275M
  328. Landforms of the Earth
    https://link.springer.com/chapter/10.1007/978-3-319-26947-4_12
  329. Norsk Geografisk Tidsskrift – Norwegian Journal of Geography
    https://ui.adsabs.harvard.edu/abs/2017NGTid..71..114V
  330. Environmental Research Letters
    https://doi.org/10.1088%2F1748-9326%2F8%2F2%2F024035
  331. Huhtamaa & Helama 2017, p. 40.
  332. Huhtamaa & Helama 2017, pp. 40–41.
  333. The butterfly effect: insects and the making of the modern world
  334. The Economic History Review
    https://doi.org/10.1111%2Fj.1468-0289.2009.00492.x
  335. Human Ecology
    https://ui.adsabs.harvard.edu/abs/2009HumEc..37..213H
  336. Agricultural and Food Science
    https://doi.org/10.23986%2Fafsci.6334
  337. Huhtamaa & Helama 2017, p. 41.
  338. Huhtamaa, Stoffel & Corona 2022, p. 2088.
  339. Huhtamaa & Helama 2017, pp. 47–48.
  340. Huhtamaa, Stoffel & Corona 2022, p. 2082.
  341. Geophysical Research Letters
    https://www.dora.lib4ri.ch/eawag/islandora/object/eawag%3A5979
  342. Gervais & MacDonald 2001, pp. 500–503.
  343. Rusakov et al. 2022, p. 53.
  344. Rusakov et al. 2022, p. 54.
  345. Plechov, Balashova & Dirksen 2010, p. 977.
  346. Journal of Climate
    https://doi.org/10.1175%2FJCLI-D-13-00360.1
  347. Human Ecology
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6015616
  348. Kužić 2013, pp. 105–107.
  349. Kužić 2013, p. 109.
  350. Anadolu ve Balkan Araştırmaları Dergisi
    https://doi.org/10.32953%2Fabad.1031894
  351. Lee, Zhang & Fei 2016, p. 4.
  352. Lee, Zhang & Fei 2016, p. 10.
  353. Lee, Zhang & Fei 2016, p. 3.
  354. Fei & Zhou 2009, p. 929.
  355. Fei & Zhou 2009, p. 930.
  356. Fei & Zhou 2009, p. 932.
  357. Resources and Environment in the Yangtze Basin
    https://web.archive.org/web/20190324111343/http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJLY200804031.htm
  358. Quaternary Science Reviews
    https://doi.org/10.1016%2Fj.quascirev.2015.05.020
  359. International Journal of Climatology
    https://ui.adsabs.harvard.edu/abs/2020IJCli..40.1561L
  360. Nature Communications
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560780
  361. Wohlfarth et al. 2019, pp. 17204, 17206.
  362. Lee, Zhang & Fei 2016, p. 8.
  363. Lee, Zhang & Fei 2016, p. 9.
  364. Nature Geoscience
    https://ui.adsabs.harvard.edu/abs/2009NatGe...2...51D
  365. Perú: Perfil Sociodemográfico – Informe Nacional
    https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1539/libro.pdf
  366. Prival et al. 2019, pp. 15–16.
  367. Evaluación del peligro volcánico en Perú: una herramienta para la gestión del riesgo de desastres
    https://repositorio.igp.gob.pe/handle/20.500.12816/5276
  368. Diario Correo
    https://diariocorreo.pe/edicion/arequipa/igp-vigilara-los-10-volcanes-mas-peligrosos-del-peru-783302/
  369. Reconocimiento automático de señales sísmicas de origen volcánico para la alerta temprana de erupciones volcánicas del sur del Perú
    https://repositorio.igp.gob.pe/handle/20.500.12816/4783
  370. Puma et al. 2021, p. 52.
  371. Puma et al. 2021, p. 56.
  372. Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 5.
  373. Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 7.
  374. Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 9.
  375. Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 34.
  376. Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 38.
  377. Masías Alvarez, Ramos Palomino & Antayhua Vera 2011, p. 58.
  378. Yupa Paredes, Pajuelo Aparicio & Cruz Pauccara 2019, p. 31.
  379. Schwarzer et al. 2010, p. 1543.
  380. Boletín de la Sociedad Argentina de Botánica
    https://revistas.unc.edu.ar/index.php/BSAB/article/view/29299
  381. Schwarzer et al. 2010, p. 1541.
Image
Source:
Tip: Wheel or +/− to zoom, drag to pan, Esc to close.