Topzle Topzle

History of penicillin

Updated: Wikipedia source

History of penicillin

The history of penicillin traces how observations of antibiotic activity in the mould Penicillium led to the development of penicillins, the first widely used antibiotics. Ancient societies used moulds to treat infections, and many people observed the inhibition of bacterial growth by moulds. While working at St Mary's Hospital in London in 1928, Scottish physician Alexander Fleming was the first to show experimentally that a Penicillium mould secretes an antibacterial substance, which he named "penicillin". The mould was found to be a variant of Penicillium chrysogenum (now called Penicillium rubens), a contaminant of a bacterial culture in his laboratory. The work on penicillin at St Mary's ended in 1929. In 1939, a team of scientists at the Sir William Dunn School of Pathology at the University of Oxford, led by Howard Florey that included Edward Abraham, Ernst Chain, Mary Ethel Florey, Norman Heatley and Margaret Jennings, began researching penicillin. They developed a method for cultivating the mould and extracting, purifying and storing penicillin from it, together with an assay for measuring its purity. "Penicillin" now became the name of the active ingredient in the mould juice. They carried out experiments on animals to determine penicillin's safety and effectiveness before conducting clinical trials and field tests. They derived penicillin's chemical formula and determined how it works. The private sector and the United States Department of Agriculture located and produced new strains and developed mass production techniques. During the Second World War penicillin became an important part of the Allied war effort, saving thousands of lives. Alexander Fleming, Howard Florey and Ernst Chain shared the 1945 Nobel Prize in Physiology or Medicine for the discovery and development of penicillin. After the end of the war in 1945, penicillin became widely available. Dorothy Hodgkin determined its chemical structure, one of the achievements for which she received the Nobel Prize in Chemistry in 1964. This led to the development of semisynthetic penicillins that were more potent and effective against a wider range of bacteria. The drug was synthesised in 1957, but cultivation of mould remains the primary means of production. It was discovered that adding penicillin to animal feed increased weight gain, improved feed-conversion efficiency, promoted more uniform growth and facilitated disease control. Agriculture became a major user of penicillin. Shortly after their discovery of penicillin, the Oxford team reported penicillin resistance in many bacteria. Research that aims to circumvent and understand the mechanisms of antibiotic resistance continues today.

Tables

· Chemical analysis
2-Pentenylpenicillin
2-Pentenylpenicillin
UK nomenclature
Penicillin I
US nomenclature
Penicillin F
Chemical name
2-Pentenylpenicillin
Benzylpenicillin
Benzylpenicillin
UK nomenclature
Penicillin II
US nomenclature
Penicillin G
Chemical name
Benzylpenicillin
p-Hydroxybenzylpenicillin
p-Hydroxybenzylpenicillin
UK nomenclature
Penicillin III
US nomenclature
Penicillin X
Chemical name
p-Hydroxybenzylpenicillin
n-Heptylpenicillin
n-Heptylpenicillin
UK nomenclature
Penicillin IV
US nomenclature
Penicillin K
Chemical name
n-Heptylpenicillin
UK nomenclature
US nomenclature
Chemical name
Penicillin I
Penicillin F
2-Pentenylpenicillin
Penicillin II
Penicillin G
Benzylpenicillin
Penicillin III
Penicillin X
p-Hydroxybenzylpenicillin
Penicillin IV
Penicillin K
n-Heptylpenicillin

References

  1. On 17 August 2021, Illinois Governor J. B. Pritzker signed a bill designating it as the official State Microbe of Illino
  2. There is a popular story that Mary K. Hunt (or Mary Hunt Stevens), a staff member of Raper's, collected the mould; for w
  3. See § Chemical analysis for the different forms of penicillin.
  4. Although the Alsos Mission was primarily concerned with nuclear technology, it had a broader mission to gather informati
  5. Bickel 1995, p. 61.
  6. "Aboriginal use of fungi"
    https://www.anbg.gov.au/fungi/aboriginal.html
  7. The Journal of Antimicrobial Chemotherapy
    https://doi.org/10.1093%2Fjac%2Fdkv484
  8. Chemistry-Didactics-Ecology-Metrology
    https://doi.org/10.1515%2Fcdem-2017-0003
  9. Journal of Cell Science
    https://journals.biologists.com/jcs/article-abstract/s2-11/44/323/61491/Memoirs-The-Origin-and-Distribution-of-Microzymes
  10. MacFarlane 1979, pp. 13–15.
  11. "Penicillin & Chance"
    https://web.archive.org/web/20090528100504/http://www1.umn.edu/ships/updates/fleming.htm
  12. Endeavour
    https://dspace.lboro.ac.uk/2134/21810
  13. Pasteur, Louis
    https://wellcomecollection.org/works/srramk3e/items
  14. British Journal of the Royal College of General Practitioners
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2157443
  15. Journal of the History of Medicine and Allied Sciences
    https://doi.org/10.1093%2Fjhmas%2Fvi.summer.287
  16. Mycologia
    https://doi.org/10.1080%2F00275514.1947.12017635
  17. Kruif 1996, p. 157.
  18. Quoted and translated by Howard Florey in Florey 1946, p. 102.
  19. Italian Journal of Public Health
    http://ijphjournal.it/article/view/5688/5424
  20. Histoire des Sciences Médicales
    https://web.archive.org/web/20190713144835/http://www.biusante.parisdescartes.fr/sfhm/hsm/HSMx2002x036x001/HSMx2002x036x001x0011.pdf
  21. Journal of Medical Biography
    http://journals.sagepub.com/doi/10.1177/096777200000800108
  22. The Lancet
    https://linkinghub.elsevier.com/retrieve/pii/S0140673605663349
  23. Science Vision
    https://doi.org/10.33493%2Fscivis.20.01.03
  24. British Journal of Biomedical Science
    https://search.worldcat.org/issn/0967-4845
  25. Journal of Medical Biography
    https://doi.org/10.1177%2F096777209300100113
  26. Greenwood 2008, p. 86.
  27. Singapore Medical Journal
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4520913
  28. Mycoses
    https://doi.org/10.1111%2Fmyc.12599
  29. Pommerville 2014, p. 807.
  30. B. influenzae
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2041430
  31. Fleming 1999, p. 83.
  32. Mayo Clinic Proceedings
    https://doi.org/10.4065%2F72.7.683
  33. Irish Journal of Medical Science
    https://doi.org/10.1007%2Fs11845-008-0139-x
  34. Philosophical Transactions of the Royal Society B: Biological Sciences
    https://doi.org/10.1098%2Frstb.1931.0015
  35. IMA Fungus
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317369
  36. Mycologia
    https://doi.org/10.2307%2F3754632
  37. "International Code of Botanical Nomenclature (VIENNA CODE). Appendix IV: Nomina specifica conservanda et rejicienda. B. Fungi"
    https://www.iapt-taxon.org/icbn/main.htm
  38. Persoonia
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589797
  39. Medical History
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1139110
  40. Vesalius
    https://search.worldcat.org/issn/1373-4857
  41. The Birth of Penicillin, and the Disarming of Microbes
  42. Medical Mycology
    https://doi.org/10.1080%2F00362178185380261
  43. The Birth of Penicillin, and the Disarming of Microbes
  44. British Journal of Experimental Pathology
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2041430
  45. The Yale Journal of Biology and Medicine
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5369031
  46. Williams 1984, p. 67.
  47. Nature
    https://doi.org/10.1038%2F154459a0
  48. American Chemical Society
    https://www.acs.org/education/whatischemistry/landmarks/flemingpenicillin.html
  49. Proceedings of the Royal Society B: Biological Sciences
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5366029
  50. Gaynes 2017, pp. 849–853.
  51. Chain 1971, pp. 297–298.
  52. Chain 1972, pp. 107–108.
  53. Biographical Memoirs of Fellows of the Royal Society
    http://rsbm.royalsocietypublishing.org/content/60/5.1
  54. "Ernst B. Chain – Nobel Lecture: The Chemical Structure of the Penicillins"
    https://www.nobelprize.org/nobel_prizes/medicine/laureates/1945/chain-lecture.html
  55. MacFarlane 1979, pp. 274–275.
  56. MacFarlane 1979, p. 285.
  57. Chain 1971, p. 301.
  58. Chain 1972, p. 111.
  59. MacFarlane 1979, p. 300.
  60. MacFarlane 1979, pp. 301–303.
  61. Mason 2022, pp. 119–121.
  62. Jonas 1989, p. 269.
  63. MacFarlane 1979, pp. 300–303.
  64. Hobby 1985, pp. 64–65.
  65. Wilson 1976, p. 156.
  66. Sheehan 1982, p. 30.
  67. Williams 1984, p. 96.
  68. MacFarlane 1979, pp. 306–307.
  69. Williams 1984, p. 118.
  70. MacFarlane 1979, p. 325.
  71. Mason 2022, p. 191.
  72. Mason 2022, p. 122.
  73. Williams 1984, p. 100.
  74. Nature
    https://doi.org/10.1038%2F146837a0
  75. MacFarlane 1979, pp. 305–308.
  76. The Lancet
    https://doi.org/10.1016%2FS0140-6736%2800%2972122-2
  77. Wilson 1976, pp. 158–159.
  78. Williams 1984, pp. 69–70.
  79. Mason 2022, pp. 122–123.
  80. "Research School of Chemistry Safety Regulations"
    http://rsc.anu.edu.au/~perri/RSC_Web/RSC%20Safety%20Regulations%20July%202011.pdf
  81. Williams 1984, p. 99.
  82. Wilson 1976, p. 203.
  83. Nature
    https://doi.org/10.1038%2F149328b0
  84. British Journal of Experimental Pathology
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2065494
  85. Nature
    https://doi.org/10.1038%2F149356a0
  86. Williams 1984, p. 111.
  87. Williams 1984, p. 110.
  88. MacFarlane 1979, pp. 308–312.
  89. Sheehan 1982, p. 32.
  90. The Lancet
    https://doi.org/10.1016%2FS0140-6736%2801%2908728-1
  91. MacFarlane 1979, pp. 313–316.
  92. MacFarlane 1979, p. 315.
  93. MacFarlane 1979, pp. 319–320.
  94. Mason 2022, p. 152.
  95. Mason 2022, p. 156.
  96. MacFarlane 1979, pp. 322–324.
  97. Mason 2022, pp. 162–164.
  98. Bickel 1995, pp. 124–129.
  99. Hobby 1985, pp. 69–73.
  100. Journal of Clinical Investigation
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC435076
  101. The New York Times
    https://www.nytimes.com/1941/05/06/archives/giant-germicide-yielded-by-mold-new-nontoxic-drug-said-to-be-the.html
  102. MacFarlane 1979, pp. 329–331.
  103. "Making Penicillin Possible: Norman Heatley Remembers"
    https://web.archive.org/web/20070221041204/http://www.sciencewatch.com/interviews/norman_heatly.htm
  104. MacFarlane 1979, pp. 331–333.
  105. MacFarlane 1979, pp. 342–346.
  106. The Lancet
    https://doi.org/10.1016%2FS0140-6736%2800%2941962-8
  107. The Ulster Medical Journal
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2385475
  108. Prometheus
    https://doi.org/10.1080/08109020802459306
  109. Emery 2023, p. 8.
  110. Williams 1984, pp. 125–128.
  111. "Discovery and Development of Penicillin: International Historic Chemical Landmark"
    https://www.acs.org/education/whatischemistry/landmarks/flemingpenicillin.html
  112. Williams 1984, pp. 130–132.
  113. Journal of the Washington Academy of Sciences
    https://search.worldcat.org/issn/0043-0439
  114. Journal of the History of Medicine and Allied Sciences
    https://doi.org/10.1093%2Fjhmas%2F48.4.371
  115. Williams 1984, pp. 134–137.
  116. Hobby 1985, pp. 104–105.
  117. Williams 1984, pp. 138–139.
  118. Baxter 1968, p. 347.
  119. Yale Medicine Magazine
    https://medicine.yale.edu/news/yale-medicine-magazine/article/fulton-penicillin-and-chance/
  120. The New York Times
    https://www.nytimes.com/1978/02/15/archives/ogden-d-miller-73-retired-educator-exgunnery-school-headmaster.html
  121. Bickel 1995, pp. 175–178.
  122. Hobby 1985, p. 96.
  123. Williams 1984, pp. 133–134.
  124. Wilson 1976, pp. 198–200.
  125. Williams 1984, p. 146.
  126. "The Enduring Mystery of 'Moldy Mary'"
    https://tellus.ars.usda.gov/stories/articles/enduring-mystery-moldy-mary
  127. Journal of Industrial Microbiology & Biotechnology
    https://doi.org/10.1007%2Fs10295-009-0553-8
  128. Applied Microbiology and Biotechnology
    http://link.springer.com/10.1007/s00253-011-3587-6
  129. "Editorial: Howard Florey and the Penicillin Story"
    https://www.proquest.com/openview/d5ed3749f4eb8b5b8bbe9d4ac3d955fd/1?pq-origsite=gscholar&cbl=11254
  130. Hobby 1985, pp. 100–101, 234.
  131. "Penicillin Production through Deep-tank Fermentation - National Historic Chemical Landmark"
    https://www.acs.org/education/whatischemistry/landmarks/penicillin.html
  132. Bud 2007, pp. 44–45.
  133. Hobby 1985, pp. 183–185.
  134. "Discovery and Development of Penicillin"
    https://www.acs.org/education/whatischemistry/landmarks/flemingpenicillin.html
  135. Exploring Our History
    https://web.archive.org/web/20130526181222/http://www.pfizer.com/about/history/1900_1950.jsp
  136. Bickel 1995, pp. 224–230.
  137. Matthews 2008, pp. 323–324.
  138. Matthews 2008, pp. 324–327.
  139. Williams 1984, pp. 134–135.
  140. Canadian Journal of Public Health
    https://search.worldcat.org/issn/0319-2652
  141. Bickel 1995, pp. 295–301.
  142. Perspectives in Biology and Medicine
    https://doi.org/10.1353%2Fpbm.2004.0037
  143. Shama & Reinarz 2002, pp. 357–359.
  144. Shama & Reinarz 2002, pp. 353–357.
  145. Shama & Reinarz 2002, pp. 360–361.
  146. Shama & Reinarz 2002, pp. 351–353.
  147. Goudsmit 1947, p. 14.
  148. Bud 2007, pp. 78–79.
  149. Bud 2007, pp. 85–88.
  150. Bud 2007, pp. 88–91.
  151. Williams 1984, pp. 192–195.
  152. Journal of Infection and Chemotherapy
    https://doi.org/10.1007%2Fs101560200022
  153. Williams 1984, p. 122.
  154. Hobby 1985, pp. 132–134.
  155. Williams 1984, pp. 154–157.
  156. Wilson 1976, pp. 217–220.
  157. Hobby 1985, pp. 127–128.
  158. Hobby 1985, pp. 130–131.
  159. Hobby 1985, pp. 135–136.
  160. Hobby 1985, p. 140.
  161. Hobby 1985, p. 142.
  162. Wilson 1976, p. 202.
  163. Hobby 1985, pp. 191, 249.
  164. Hobby 1985, p. 196.
  165. Hobby 1985, p. 186.
  166. Baxter 1968, pp. 352–353.
  167. New York Times
    https://www.nytimes.com/1972/02/04/archives/dr-chester-keefer-dies-at-74-held-boston-u-medical-posts.html
  168. Hobby 1985, pp. 251–253.
  169. Hobby 1985, pp. 122–124.
  170. Williams 1984, pp. 177–179.
  171. Adelaidia
    https://adelaidia.history.sa.gov.au/people/sir-hugh-cairns-kbe
  172. Williams 1984, pp. 177–182.
  173. Mason 2022, pp. 279–280.
  174. Bickel 1995, p. 187.
  175. Biographical Memoirs of Fellows of the Royal Society
    http://rsbm.royalsocietypublishing.org/content/60/5.1
  176. Advancement of Science
    https://search.worldcat.org/issn/0036-8075
  177. Journal of Peptide Science
    https://doi.org/10.1002%2Fpsc.888
  178. Science
    https://ui.adsabs.harvard.edu/abs/1945Sci...102..627M
  179. Annual Review of Biochemistry
    http://www.annualreviews.org/doi/10.1146/annurev.bi.17.070148.003301
  180. Medical Tribune
    http://www.medical-tribune.at/dynasite.cfm?dsmid=68732&dspaid=531457
  181. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/1957JAChS..79.1262S
  182. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/1959JAChS..81.3089S
  183. Corey, E. J.
    http://www.nap.edu/readingroom.php?book=biomems&page=jsheehan.html
  184. Angewandte Chemie
    https://doi.org/10.1002%2F%28SICI%291521-3773%2820000103%2939%3A1%3C44%3A%3AAID-ANIE44%3E3.0.CO%3B2-L
  185. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/1959JAChS..81.5838S
  186. Journal of the American Chemical Society
    https://ui.adsabs.harvard.edu/abs/1962JAChS..84.2983S
  187. Sheehan 1964, pp. 15–24.
  188. International Journal of Antimicrobial Agents
    https://doi.org/10.1016%2Fj.ijantimicag.2007.11.010
  189. Nature
    https://ui.adsabs.harvard.edu/abs/1959Natur.183..257B
  190. International Journal of Antimicrobial Agents
    https://doi.org/10.1016%2Fj.ijantimicag.2006.09.003
  191. Genome Biology
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5517843
  192. Biographical Memoirs of Fellows of the Royal Society
    https://royalsocietypublishing.org/doi/10.1098/rsbm.1983.0003
  193. Williams 1984, pp. 128–129.
  194. Slinn 2008, p. 193.
  195. Williams 1984, pp. 310–313.
  196. mw- .mw- US 2442141, Moyer, A. J., "Method for Production of Penicillin", issued 25 March 1948, assigned to US Agricultu
    https://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US2442141
  197. Ulster Medical Journal
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2385475
  198. Bickel 1995, pp. 236–237.
  199. Williams 1984, pp. 308–309.
  200. Williams 1984, pp. 314–316.
  201. Mason 2022, pp. 273–274.
  202. Mason 2022, pp. 274–276.
  203. Bickel 1995, p. 173.
  204. MacFarlane 1979, pp. 352–353.
  205. The Lancet
    https://doi.org/10.1016%2FS0140-6736%2807%2960929-5
  206. "The Nobel Prize in Physiology or Medicine 1944"
    https://www.nobelprize.org/prizes/medicine/1944/summary/
  207. Norrby 2010, pp. 176–178.
  208. Nomination archive
    https://www.nobelprize.org/nomination/archive/show_people.php?id=3058
  209. Lax 2015, pp. 245–246.
  210. "The Nobel Prize in Physiology or Medicine 1945"
    https://www.nobelprize.org/prizes/medicine/1945/summary/
  211. Lax 2015, p. 247.
  212. Lax 2015, pp. 239–240.
  213. The New York Times
    https://www.nytimes.com/1945/10/26/archives/winners-of-the-nobel-prize-for-medicine-fleming-and-two-coworkers.html
  214. The New York Times
    https://timesmachine.nytimes.com/timesmachine/1945/10/27/94028697.html?pageNumber=12
  215. Hägg, Gunnar
    https://www.nobelprize.org/prizes/chemistry/1964/ceremony-speech/
  216. "Speed read: An Eye for Structure"
    https://www.nobelprize.org/prizes/chemistry/1964/speedread/
  217. British Journal of Pharmacology and Chemotherapy
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482127
  218. The Lancet
    https://doi.org/10.1016%2FS0140-6736%2865%2991165-7
  219. Baylor University Medical Center Proceedings
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1291320
  220. Infectious Diseases Now
    https://doi.org/10.1016%2Fj.idnow.2020.11.007
  221. Antimicrobial Agents and Chemotherapy
    https://search.worldcat.org/issn/0066-4804
  222. Antimicrobial Agents and Chemotherapy
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC429762
  223. Journal of Veterinary Pharmacology and Therapeutics
    https://doi.org/10.1111%2Fjvp.12482
  224. The Journal of Allergy and Clinical Immunology: In Practice
    https://doi.org/10.1016%2Fj.jaip.2017.03.020
  225. Bud 2007, p. 206.
  226. Microbiology and Molecular Biology Reviews
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937522
  227. Nature
    https://doi.org/10.1038%2F146837a0
  228. Nature
    https://doi.org/10.1038%2F146837a0
  229. Fleming 1999, pp. 83–93.
  230. Bud 2007, pp. 141–142.
  231. Bud 2007, pp. 158–160.
  232. Bud 2007, p. 152.
  233. Bud 2007, pp. 146–153.
  234. The Journal of Clinical Investigation
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC154455
  235. Bud 2007, pp. 118–120.
  236. Bud 2007, pp. 119–120.
  237. Clinical Infectious Diseases
    https://doi.org/10.1093%2Fclinids%2F15.1.77
  238. Paediatric Respiratory Reviews
    https://doi.org/10.1016%2Fj.prrv.2006.04.004
  239. Boyd 2001, pp. 647–648.
  240. Kirchhelle 2018, p. 325.
  241. Bud 2007, p. 171.
  242. Bud 2007, pp. 174–175.
  243. Kirchhelle 2018, pp. 330–333.
  244. Kirchhelle 2018, pp. 333–335.
  245. Bud 2007, pp. 182–183.
  246. Bud 2007, pp. 205–206.
  247. Shnayerson & Plotkin 2002, pp. 135–143.
  248. Brazillian Journal of Veterinary Medicine
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543772
  249. European Journal of Pharmaceutical Sciences
    https://doi.org/10.1016%2Fj.ejps.2023.106473
  250. The Guardian
    https://www.theguardian.com/environment/article/2024/may/17/post-brexit-rules-on-antibiotic-use-on-farms-water-down-eu-laws-experts-say
Image
Source:
Tip: Wheel or +/− to zoom, drag to pan, Esc to close.