Topzle Topzle

Euclid's Elements

Updated: Wikipedia source

Euclid's Elements

The Elements (Ancient Greek: Στοιχεῖα Stoikheîa) is a mathematical treatise written c. 300 BC by the Ancient Greek mathematician Euclid. The Elements is the oldest extant large-scale deductive treatment of mathematics. Drawing on the works of earlier mathematicians such as Hippocrates of Chios, Eudoxus of Cnidus, and Theaetetus, the Elements is a collection in 13 books of definitions, postulates, geometric constructions, and theorems with their proofs that covers plane and solid Euclidean geometry, elementary number theory, and incommensurability. These include the Pythagorean theorem, Thales' theorem, the Euclidean algorithm for greatest common divisors, Euclid's theorem that there are infinitely many prime numbers, and the construction of regular polygons and polyhedra. Often referred to as the most successful textbook ever written, the Elements has continued to be used for introductory geometry. It was translated into Arabic and Latin in the medieval period, where it exerted a great deal of influence on mathematics in the medieval Islamic world and in Western Europe, and has proven instrumental in the development of logic and modern science, where its logical rigor was not surpassed until the 19th century.

Infobox

Author
Euclid
Language
Ancient Greek
Subject
Euclidean geometry, number theory, incommensurability
Genre
Mathematics
Publication date
c. 300 BC
Pages
13 books

Tables

Summary Contents of Euclid's Elements (Heath edition) · Contents
Definitions
Definitions
Book
Definitions
I
23
II
2
III
11
IV
7
V
18
VI
4
VII
22
VIII
IX
X
16
XI
28
XII
XIII
Totals
131
Postulates
Postulates
Book
Postulates
I
5
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII
XIII
Totals
5
Common Notions
Common Notions
Book
Common Notions
I
5
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII
XIII
Totals
5
Propositions
Propositions
Book
Propositions
I
48
II
14
III
37
IV
16
V
25
VI
33
VII
39
VIII
27
IX
36
X
115
XI
39
XII
18
XIII
18
Totals
465
Book
I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII
XIII
Totals
Definitions
23
2
11
7
18
4
22
16
28
131
Postulates
5
5
Common Notions
5
5
Propositions
48
14
37
16
25
33
39
27
36
115
39
18
18
465
Euclid's } }common notions[19] · Contents
Let the following be postulated:
Let the following be postulated:
No.
Let the following be postulated:
1
1
No.
1
Postulates
To draw a straight line from any point to any point.
2
2
No.
2
Postulates
To produce a finite straight line continuously in a straight line
3
3
No.
3
Postulates
To describe a circle with any centre and distance
4
4
No.
4
Postulates
That all right angles are equal to one another
5
5
No.
5
Postulates
That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles
No.
No.
No.
No.
Postulates
Common notions
1
1
No.
1
Postulates
Things which are equal to the same thing are also equal to one another
2
2
No.
2
Postulates
If equals be added to equals, the wholes are equal
3
3
No.
3
Postulates
If equals be subtracted from equals, the remainders are equal
4
4
No.
4
Postulates
Things which coincide with one another are equal to one another
5
5
No.
5
Postulates
The whole is greater than the part
No.
Postulates
Let the following be postulated:
1
To draw a straight line from any point to any point.
2
To produce a finite straight line continuously in a straight line
3
To describe a circle with any centre and distance
4
That all right angles are equal to one another
5
That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles
No.
Common notions
1
Things which are equal to the same thing are also equal to one another
2
If equals be added to equals, the wholes are equal
3
If equals be subtracted from equals, the remainders are equal
4
Things which coincide with one another are equal to one another
5
The whole is greater than the part

References

  1. A commentary on the first book of Euclid's
    https://archive.org/details/morrow-commentary-on-the-first-book-of-euclids-elements-en-1992
  2. Hippocrates of Chios should not be confused with his contemporary Hippocrates of Kos, famous as the "father of medicine"
  3. The converse of this postulate is: if the interior angles sum to two right angles, then the lines do not intersect. It i
  4. "P.Oxy. LXXXII 5299. Euclid, Elements 1.4 (Diagram), 8–11, 14–25 (without Proofs)"
    https://portal.sds.ox.ac.uk/articles/online_resource/P_Oxy_LXXXII_5299_Euclid_Elements_1_4_Diagram_8_11_14_25_without_Proofs_/21186181/2
  5. MS. Vat.gr.190.pt.1 and MS. Vat.gr.190.pt.2. Digital Vatican Library. Retrieved 2025-09-11.
    https://digi.vatlib.it/mss/detail/Vat.gr.190.pt.1
  6. Bodleian Library
    https://digital.bodleian.ox.ac.uk/objects/d4a23501-0b98-4aff-acd6-fe06fe9b62e3/
  7. It was once thought that a complete Latin translation by Boethius remained available in England before Adelard, and was
  8. Digital Vatican Library
    https://digi.vatlib.it/mss/detail/Pal.lat.1348
  9. Grant 2002.
  10. Van der Waerden 1975, p. 197.
  11. Asper 2010, § para. 6.
  12. Taisbak & Van der Waerden 2021, § "Sources and contents of the Elements".
  13. Cuomo 2005, p. 131.
  14. Sialaros 2021, § "Works".
  15. Rouse Ball 1915, p. 15.
  16. Rouse Ball 1915, p. 38.
  17. Review of The Evolution of the Euclidean Elements by Bartel Leendert van der Waerden (1976), Historia Mathematica 3 (4):
    https://doi.org/10.1016%2F0315-0860%2876%2990092-6
  18. Unguru 1985.
  19. Merzbach & Boyer 2011, p. 93.
  20. Merzbach & Boyer 2011, pp. 93–94.
  21. Artmann 2012, p. 3.
  22. Asper 2010, § para. 4.
  23. Asper 2010, § para. 2.
  24. Sialaros 2021, § "The Elements".
  25. Jahnke 2010, p. 18.
  26. Merzbach & Boyer 2011, p. 90.
  27. Heath 1908, pp. 154–155, Vol. I.
  28. Artmann 2012, p. 3–4.
  29. Wolfe 1945, p. 4.
  30. Pickover 2009, p. 56.
  31. Artmann 2012, p. 4.
  32. Corry 2021, p. 12.
  33. Reid 1963, p. 20.
  34. Merzbach & Boyer 2011, p. 97.
  35. AIMS Mathematics
    https://doi.org/10.3934%2FMath.2017.1.128
  36. Corry 2013.
  37. Merzbach & Boyer 2011, p. 98.
  38. Fowler 1980.
  39. Herz-Fischler 1998, pp. 1–3.
  40. Artmann 2012, p. 79.
  41. Artmann 2012, p. 5.
  42. Artmann 2012, pp. 5–6.
  43. Corry 2021.
  44. Artmann 2012, p. 5-6.
  45. Zeeman 2008.
  46. Artmann 2012, p. 6.
  47. Artmann 2012, p. 136.
  48. Artmann 2012, p. 148.
  49. Fletcher 1938.
  50. Heath 1908, Vol. II, p. 277.
    https://archive.org/details/bwb_S0-AHZ-704_2/page/276
  51. Caldwell et al. 2012.
  52. Artmann 2012, p. 7.
  53. Unguru 2018, pp. 26–27.
    https://books.google.com/books?id=DZRdDwAAQBAJ&pg=PA26
  54. Merzbach & Boyer 2011, pp. 103–104.
  55. O'Connor & Robertson 1999.
  56. Artmann 2012, p. 223.
  57. Heath 1908, pp. 28–31, Vol. III.
  58. Knorr 1975, p. 157.
    https://books.google.com/books?id=_1H6BwAAQBAJ&pg=PA157
  59. Roskam 2009.
  60. Knorr 1983, p. 60.
  61. See Book X, Definition 4, Heath 1908, pp. 10, 12–13, Vol. III.
  62. Dyde 1899, pp. 86–87.
    https://books.google.com/books?id=wt29k-Jz8pIC&pg=PA86
  63. Knorr 1983, p. 42.
  64. Artmann 2012, p. 9.
  65. Edwards 1979, p. 23.
  66. Edwards 1979, pp. 24–25.
  67. Artmann 2012, p. 10.
  68. Merzbach & Boyer 2011, p. 106.
  69. Merzbach & Boyer 2011, p. 107, Apocrypha.
  70. Hartshorne 2000, p. 18.
  71. Mueller 1969.
  72. Andrade-Molina & Ravn 2016.
  73. Hartshorne 2000, pp. 18–20.
  74. Heath 1931, p. 216.
  75. Rouse Ball 1915, p. 54.
  76. Heath 1908, p. 59, Vol. I.
  77. Rouse Ball 1915, p. 55.
  78. Rouse Ball 1915, pp. 54, 58, 127.
  79. Heath 1931, pp. 15–18.
  80. Hartshorne 2000, p. 1.
  81. Taisbak & Van der Waerden 2021, § "Legacy".
  82. Merzbach & Boyer 2011, p. 108.
  83. Bunt, Jones & Bedient 1988, p. 142.
  84. Fowler 1999, pp. 209–210.
  85. P. Herc. 1061
  86. Fowler 1999, pp. 210–211.
  87. Heath 1908, pp. 47–51, Vol. I.
  88. Heath 1908, pp. 51–53, Vol. I.
  89. Heath 1908, pp. 64–74, Vol. I.
  90. Knorr 1996.
  91. Russell 2013, p. 177.
  92. Schubring 2022.
  93. Elior 2024.
  94. Brentjes 2018.
  95. Reynolds & Wilson 1991, p. 57.
  96. Wardhaugh 2023, p. 46.
  97. Murdoch 1967.
  98. Folkerts 1989.
  99. Rouse Ball 1915, p. 165.
  100. Knorr 1990.
  101. Busard 2005, pp. 1–40, Survey of the Arabic–Latin and Greek–Latin translations.
  102. Furlong 2015.
  103. Mueller 1970, p. xlvii.
    https://books.google.com/books?id=JZEHj2fEmqAC&pg=PR47
  104. Swetz 2021.
  105. Elior 2021.
  106. Alexanderson & Greenwalt 2012.
  107. Goulding 2009, p. 120.
  108. Simpkins 1966.
  109. Siu 2011.
  110. Wardhaugh 2021, pp. 212–226.
  111. Field 1997, p. 246.
  112. Davis 1977, pp. 18–19.
  113. Damiani 2024.
  114. Rothstein 2013, p. 101.
  115. Grafton 2008.
  116. Wardhaugh 2021.
  117. Moktefi 2005.
  118. Toumasis 1990.
  119. Sinclair 2008, pp. 14–18, The geometry curriculum in the United States in the early nineteenth century.
    https://books.google.com/books?id=G_onDwAAQBAJ&pg=PA14
  120. Brock 1975.
  121. Sinclair 2008, pp. 23–25, 1860s: A mathematical challenge to the dominance of Euclidean geometry.
    https://books.google.com/books?id=G_onDwAAQBAJ&pg=PA23
  122. Sinclair 2008, pp. 19–22, 1850s: Early pedagogical influences on the geometry curriculum.
    https://books.google.com/books?id=G_onDwAAQBAJ&pg=PA19
  123. Jameson 2019; Hoppen 2023
  124. Bardi 2008.
  125. Wardhaugh 2023, pp. 267–268.
  126. Majer 2006.
  127. Beeson 2022.
  128. Heath 1908, p. 155, Vol. I.
  129. Laubenbacher & Pengelley 1999.
  130. Artmann 2012, p. v.
  131. Jahnke 2003, p. 156.
    https://books.google.com/books?id=c8AjDwAAQBAJ&pg=PA156
  132. Robič 2015.
  133. Beeson, Narboux & Wiedijk 2019.
  134. Heath 1908, p. 242, Vol. I.
  135. Toussaint 1993.
  136. Panza 2012.
  137. Szmielew 1974.
  138. Cederberg 2001, pp. 41–43.
  139. Heath 1908, p. 62, Vol. I.
  140. Hilbert 1902.
  141. Baldwin 2018.
  142. Tarski 1959.
  143. Baldasso 2013.
  144. Goulding 2009.
  145. Wardhaugh 2024.
  146. Heath 1908, p. 101, Vol. I.
  147. Pantin 2006.
  148. Gavagna 2014.
  149. De Young 2012.
  150. Ackerberg-Hastings 2023.
  151. Cairns 1934.
  152. Hawes & Kolpas 2015.
  153. Moriarty 2023.
  154. Campbell 2017.
  155. Henrici 1884.
  156. McCreedy 2011.
  157. Wardhaugh 2016.
Image
Source:
Tip: Wheel or +/− to zoom, drag to pan, Esc to close.