Topzle Topzle

Atomic orbital

Updated: Wikipedia source

Atomic orbital

In quantum mechanics, an atomic orbital ( ) is a function describing the location and wave-like behavior of an electron in an atom. This function describes an electron's charge distribution around the atom's nucleus, and can be used to calculate the probability of finding an electron in a specific region around the nucleus. Each orbital in an atom is characterized by a set of values of three quantum numbers n, ℓ, and mℓ, which respectively correspond to an electron's energy, its orbital angular momentum, and its orbital angular momentum projected along a chosen axis (magnetic quantum number). The orbitals with a well-defined magnetic quantum number are generally complex-valued. Real-valued orbitals can be formed as linear combinations of mℓ and −mℓ orbitals, and are often labeled using associated harmonic polynomials (e.g., xy, x2 − y2) which describe their angular structure. An orbital can be occupied by a maximum of two electrons, each with its own projection of spin m s {\displaystyle m_{s}} . The simple names s orbital, p orbital, d orbital, and f orbital refer to orbitals with angular momentum quantum number ℓ = 0, 1, 2, and 3 respectively. These names, together with their n values, are used to describe electron configurations of atoms. They are derived from description by early spectroscopists of certain series of alkali metal spectroscopic lines as sharp, principal, diffuse, and fundamental. Orbitals for ℓ > 3 continue alphabetically (g, h, i, k, ...), omitting j because some languages do not distinguish between letters "i" and "j". Atomic orbitals are basic building blocks of the atomic orbital model (or electron cloud or wave mechanics model), a modern framework for visualizing submicroscopic behavior of electrons in matter. In this model, the electron cloud of an atom may be seen as being built up (in approximation) in an electron configuration that is a product of simpler hydrogen-like atomic orbitals. The repeating periodicity of blocks of 2, 6, 10, and 14 elements within sections of the periodic table arises naturally from the total number of electrons that occupy a complete set of s, p, d, and f orbitals, respectively, though for higher values of quantum number n, particularly when the atom bears a positive charge, energies of certain sub-shells become very similar and therefore, the order in which they are said to be populated by electrons (e.g., Cr = [Ar]4s13d5 and Cr2+ = [Ar]3d4) can be rationalized only somewhat arbitrarily.

Tables

· Quantum numbers › Complex orbitals
n = 1
n = 1
Col 1
n = 1
ℓ = 0 (s)
m ℓ = 0 {\displaystyle m_{\ell }=0}
n = 2
n = 2
Col 1
n = 2
ℓ = 0 (s)
0
ℓ = 1 (p)
−1, 0, 1
n = 3
n = 3
Col 1
n = 3
ℓ = 0 (s)
0
ℓ = 1 (p)
−1, 0, 1
ℓ = 2 (d)
−2, −1, 0, 1, 2
n = 4
n = 4
Col 1
n = 4
ℓ = 0 (s)
0
ℓ = 1 (p)
−1, 0, 1
ℓ = 2 (d)
−2, −1, 0, 1, 2
ℓ = 3 (f)
−3, −2, −1, 0, 1, 2, 3
n = 5
n = 5
Col 1
n = 5
ℓ = 0 (s)
0
ℓ = 1 (p)
−1, 0, 1
ℓ = 2 (d)
−2, −1, 0, 1, 2
ℓ = 3 (f)
−3, −2, −1, 0, 1, 2, 3
ℓ = 4 (g)
−4, −3, −2, −1, 0, 1, 2, 3, 4
ℓ = 0 (s)
ℓ = 1 (p)
ℓ = 2 (d)
ℓ = 3 (f)
ℓ = 4 (g)
n = 1
m ℓ = 0 {\displaystyle =0}
n = 2
0
−1, 0, 1
n = 3
0
−1, 0, 1
−2, −1, 0, 1, 2
n = 4
0
−1, 0, 1
−2, −1, 0, 1, 2
−3, −2, −1, 0, 1, 2, 3
n = 5
0
−1, 0, 1
−2, −1, 0, 1, 2
−3, −2, −1, 0, 1, 2, 3
−4, −3, −2, −1, 0, 1, 2, 3, 4
· Quantum numbers › Real orbitals
ℓ = 0 {\displaystyle \ell =0}
ℓ = 0 {\displaystyle \ell =0}
Col 1
ℓ = 0 {\displaystyle \ell =0}
ψ m = 0 {\displaystyle \psi _{m=0}}
s {\displaystyle {\text{s}}}
ℓ = 1 {\displaystyle \ell =1}
ℓ = 1 {\displaystyle \ell =1}
Col 1
ℓ = 1 {\displaystyle \ell =1}
ψ m = − 1 + ψ m = + 1 {\displaystyle \psi _{m=-1}+\psi _{m=+1}}
p y {\displaystyle {\text{p}}_{y}}
ψ m = 0 {\displaystyle \psi _{m=0}}
p z {\displaystyle {\text{p}}_{z}}
ψ m = − 1 − ψ m = + 1 {\displaystyle \psi _{m=-1}-\psi _{m=+1}}
p x {\displaystyle {\text{p}}_{x}}
ℓ = 2 {\displaystyle \ell =2}
ℓ = 2 {\displaystyle \ell =2}
Col 1
ℓ = 2 {\displaystyle \ell =2}
ψ m = − 2 + ψ m = + 2 {\displaystyle \psi _{m=-2}+\psi _{m=+2}}
d x 2 − y 2 {\displaystyle {\text{d}}_{x^{2}-y^{2}}}
ψ m = − 1 + ψ m = + 1 {\displaystyle \psi _{m=-1}+\psi _{m=+1}}
d y z {\displaystyle {\text{d}}_{yz}}
ψ m = 0 {\displaystyle \psi _{m=0}}
d z 2 {\displaystyle {\text{d}}_{z^{2}}}
ψ m = − 1 − ψ m = + 1 {\displaystyle \psi _{m=-1}-\psi _{m=+1}}
d x z {\displaystyle {\text{d}}_{xz}}
ψ m = − 2 − ψ m = + 2 {\displaystyle \psi _{m=-2}-\psi _{m=+2}}
d x y {\displaystyle {\text{d}}_{xy}}
ℓ = 3 {\displaystyle \ell =3}
ℓ = 3 {\displaystyle \ell =3}
Col 1
ℓ = 3 {\displaystyle \ell =3}
ψ m = − 3 + ψ m = + 3 {\displaystyle \psi _{m=-3}+\psi _{m=+3}}
f y ( 3 x 2 − y 2 ) {\displaystyle {\text{f}}_{y(3x^{2}-y^{2})}}
ψ m = − 2 + ψ m = + 2 {\displaystyle \psi _{m=-2}+\psi _{m=+2}}
f z ( x 2 − y 2 ) {\displaystyle {\text{f}}_{z(x^{2}-y^{2})}}
ψ m = − 1 + ψ m = + 1 {\displaystyle \psi _{m=-1}+\psi _{m=+1}}
f y z 2 {\displaystyle {\text{f}}_{yz^{2}}}
ψ m = 0 {\displaystyle \psi _{m=0}}
f z 3 {\displaystyle {\text{f}}_{z^{3}}}
ψ m = − 1 − ψ m = + 1 {\displaystyle \psi _{m=-1}-\psi _{m=+1}}
f x z 2 {\displaystyle {\text{f}}_{xz^{2}}}
ψ m = − 2 − ψ m = + 2 {\displaystyle \psi _{m=-2}-\psi _{m=+2}}
f x y z {\displaystyle {\text{f}}_{xyz}}
ψ m = − 3 − ψ m = + 3 {\displaystyle \psi _{m=-3}-\psi _{m=+3}}
f x ( x 2 − 3 y 2 ) {\displaystyle {\text{f}}_{x(x^{2}-3y^{2})}}
ψ m = − 3 + ψ m = + 3 {\displaystyle \psi _{m=-3}+\psi _{m=+3}}
ψ m = − 2 + ψ m = + 2 {\displaystyle \psi _{m=-2}+\psi _{m=+2}}
ψ m = − 1 + ψ m = + 1 {\displaystyle \psi _{m=-1}+\psi _{m=+1}}
ψ m = 0 {\displaystyle \psi _{m=0}}
ψ m = − 1 − ψ m = + 1 {\displaystyle \psi _{m=-1}-\psi _{m=+1}}
ψ m = − 2 − ψ m = + 2 {\displaystyle \psi _{m=-2}-\psi _{m=+2}}
ψ m = − 3 − ψ m = + 3 {\displaystyle \psi _{m=-3}-\psi _{m=+3}}
ℓ = 0 {\displaystyle \ell =0}
}}
ℓ = 1 {\displaystyle \ell =1}
}_{y}}
}_{z}}
}_{x}}
ℓ = 2 {\displaystyle \ell =2}
d x 2 − }_{x^{2}-y^{2}}}
}_{yz}}
}_{z^{2}}}
}_{xz}}
}_{xy}}
ℓ = 3 {\displaystyle \ell =3}
f y ( 3 x 2 − y 2 ) {\displaystyle {\text{f}}_{y(3x^{2}-y^{2})}}
f z ( x 2 − y 2 ) {\displaystyle {\text{f}}_{z(x^{2}-y^{2})}}
}_{yz^{2}}}
}_{z^{3}}}
}_{xz^{2}}}
}_{xyz}}
f x ( x 2 − 3 y 2 ) {\displaystyle {\text{f}}_{x(x^{2}-3y^{2})}}
· Shapes of orbitals › Orbitals table
n = 1
n = 1
Col 1
n = 1
s (ℓ = 0)
n = 2
n = 2
Col 1
n = 2
s (ℓ = 0)
p (ℓ = 1)
p (ℓ = 1)
p (ℓ = 1)
n = 3
n = 3
Col 1
n = 3
s (ℓ = 0)
p (ℓ = 1)
p (ℓ = 1)
p (ℓ = 1)
d (ℓ = 2)
d (ℓ = 2)
d (ℓ = 2)
d (ℓ = 2)
d (ℓ = 2)
n = 4
n = 4
Col 1
n = 4
s (ℓ = 0)
p (ℓ = 1)
p (ℓ = 1)
p (ℓ = 1)
d (ℓ = 2)
d (ℓ = 2)
d (ℓ = 2)
d (ℓ = 2)
d (ℓ = 2)
f (ℓ = 3)
f (ℓ = 3)
f (ℓ = 3)
f (ℓ = 3)
f (ℓ = 3)
f (ℓ = 3)
f (ℓ = 3)
n = 5
n = 5
Col 1
n = 5
s (ℓ = 0)
p (ℓ = 1)
p (ℓ = 1)
p (ℓ = 1)
d (ℓ = 2)
d (ℓ = 2)
d (ℓ = 2)
d (ℓ = 2)
d (ℓ = 2)
n = 6
n = 6
Col 1
n = 6
s (ℓ = 0)
p (ℓ = 1)
p (ℓ = 1)
p (ℓ = 1)
d (ℓ = 2)
d (ℓ = 2)
d (ℓ = 2)
d (ℓ = 2)
d (ℓ = 2)
n = 7
n = 7
Col 1
n = 7
s (ℓ = 0)
p (ℓ = 1)
p (ℓ = 1)
p (ℓ = 1)
s (ℓ = 0)
p (ℓ = 1)
d (ℓ = 2)
f (ℓ = 3)
m = 0
m = 0
m = ±1
m = 0
m = ±1
m = ±2
m = 0
m = ±1
m = ±2
m = ±3
s
pz
px
py
dz2
dxz
dyz
dxy
dx2−y2
fz3
fxz2
fyz2
fxyz
fz(x2−y2)
fx(x2−3y2)
fy(3x2−y2)
n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7
· Orbital energy
1
1
ln
1
s
1
2
2
ln
2
s
2
p
3
3
3
ln
3
s
4
p
5
d
7
4
4
ln
4
s
6
p
8
d
10
f
13
5
5
ln
5
s
9
p
11
d
14
f
17
g
21
6
6
ln
6
s
12
p
15
d
18
f
22
g
26
h
31
7
7
ln
7
s
16
p
19
d
23
f
27
g
32
h
37
8
8
ln
8
s
20
p
24
d
28
f
33
g
38
h
44
9
9
ln
9
s
25
p
29
d
34
f
39
g
45
h
51
10
10
ln
10
s
30
p
35
d
40
f
46
g
52
h
59
ln
s
p
d
f
g
h
1
1
2
2
3
3
4
5
7
4
6
8
10
13
5
9
11
14
17
21
6
12
15
18
22
26
31
7
16
19
23
27
32
37
8
20
24
28
33
38
44
9
25
29
34
39
45
51
10
30
35
40
46
52
59
· Electron placement and the periodic table
2s
2s
1s
2s
Col 14
2p
Col 15
2p
Col 16
2p
3s
3s
1s
3s
Col 14
3p
Col 15
3p
Col 16
3p
4s
4s
1s
4s
Col 9
3d
Col 10
3d
Col 11
3d
Col 12
3d
Col 13
3d
Col 14
4p
Col 15
4p
Col 16
4p
5s
5s
1s
5s
Col 9
4d
Col 10
4d
Col 11
4d
Col 12
4d
Col 13
4d
Col 14
5p
Col 15
5p
Col 16
5p
6s
6s
1s
6s
Col 2
4f
Col 3
4f
Col 4
4f
Col 5
4f
Col 6
4f
Col 7
4f
Col 8
4f
Col 9
5d
Col 10
5d
Col 11
5d
Col 12
5d
Col 13
5d
Col 14
6p
Col 15
6p
Col 16
6p
7s
7s
1s
7s
Col 2
5f
Col 3
5f
Col 4
5f
Col 5
5f
Col 6
5f
Col 7
5f
Col 8
5f
Col 9
6d
Col 10
6d
Col 11
6d
Col 12
6d
Col 13
6d
Col 14
7p
Col 15
7p
Col 16
7p
1s
2s
2p
2p
2p
3s
3p
3p
3p
4s
3d
3d
3d
3d
3d
4p
4p
4p
5s
4d
4d
4d
4d
4d
5p
5p
5p
6s
4f
4f
4f
4f
4f
4f
4f
5d
5d
5d
5d
5d
6p
6p
6p
7s
5f
5f
5f
5f
5f
5f
5f
6d
6d
6d
6d
6d
7p
7p
7p

References

  1. The Vocabulary and Concepts of Organic Chemistry
    http://media.wiley.com/product_data/excerpt/81/04716802/0471680281.pdf
  2. Oxford Dictionary of Chemistry
    https://archive.org/details/dictionaryofchem0000unse_r3p4/page/408/mode/2up?view=theater
  3. Introduction to Quantum Mechanics
  4. Quantum Chemistry
    https://archive.org/details/quantumchemistry00levi_0/page/144
  5. Physical Chemistry
  6. Quanta, Matter, and Change: A Molecular Approach to Physical Chemistry
    https://books.google.com/books?id=QbQJAgAAQBAJ&pg=PA106
  7. The Feynman Lectures on Physics – The Definitive Edition
  8. Roger Penrose, The Road to Reality.
  9. Quantum Chemistry
  10. Physical Review
    https://ui.adsabs.harvard.edu/abs/1932PhRv...41...49M
  11. International Journal of Quantum Chemistry
    https://onlinelibrary.wiley.com/doi/10.1002/qua.23293
  12. Philosophical Magazine
    http://www.chemteam.info/Chem-History/Bohr/Bohr-1913a.html
  13. Philosophical Magazine
    https://web.archive.org/web/20171127144221/http://www.chemteam.info/Chem-History/Nagaoka-1904.html
  14. A Short History of Nearly Everything
    https://archive.org/details/shorthistoryofne00brys
  15. Philosophical Magazine
    https://zenodo.org/record/1431235
  16. Philosophical Magazine
    http://www.chemteam.info/Chem-History/Thomson-Structure-Atom.html
  17. The Making of the Atomic Bomb
    https://books.google.com/books?id=aSgFMMNQ6G4C&q=making+of+the+atomic+bomb
  18. Philosophical Magazine
    https://web.archive.org/web/20171127144221/http://www.chemteam.info/Chem-History/Nagaoka-1904.html
  19. Zeitschrift für Physik A
    https://ui.adsabs.harvard.edu/abs/1927ZPhy...43..172H
  20. Nature
    https://doi.org/10.1038%2F121580a0
  21. Quantum mechanics: Introduction
    http://archive.org/details/quantummechanics0001grei
  22. Zeitschrift für Physik
    https://ui.adsabs.harvard.edu/abs/1922ZPhy....9..353G
  23. Advanced visual quantum mechanics
  24. General chemistry: principles and modern applications
  25. Quantum mechanics: two volumes bound as one
  26. Quantum mechanics
  27. Quantum Chemistry
  28. Journal of Molecular Structure: THEOCHEM
    https://doi.org/10.1016%2FS0166-1280%2897%2900185-1
  29. General chemistry: principles and modern applications
  30. Journal of Chemical Education
    https://ui.adsabs.harvard.edu/abs/1964JChEd..41..354F
  31. The Wave Mechanics Of Electrons In Metals
    http://archive.org/details/thewavemechanicsofelectronsinmetalsraimes
  32. Physical Review B
    https://doi.org/10.1103%2FPhysRevB.93.165140
  33. Journal of Chemical Education
    https://ui.adsabs.harvard.edu/abs/1968JChEd..45...45P
  34. The Journal of Chemical Physics
    https://ui.adsabs.harvard.edu/abs/1940JChPh...8..188K
  35. Communications in Mathematical Physics
    https://ui.adsabs.harvard.edu/abs/1982CMaPh..85..549C
  36. Zeitschrift für Physik
    https://ui.adsabs.harvard.edu/abs/1923ZPhy...13..117B
  37. "Primer on Quantum Theory of the Atom"
    http://www.chem1.com/acad/webtut/atomic/qprimer/#Q26
  38. Philosophical Transactions of the Royal Society A
    https://doi.org/10.1098%2Frsta.2014.0211
  39. Journal of Chemical Education
    https://ui.adsabs.harvard.edu/abs/1969JChEd..46..678S
  40. Structure and Bonding
    https://archive.org/details/recentimpactofph0000unse/page/89
Image
Source:
Tip: Wheel or +/− to zoom, drag to pan, Esc to close.